论文标题

细菌通过缓慢移动来解决拥挤的问题

Bacteria solve the problem of crowding by moving slowly

论文作者

Meacock, Oliver J., Doostmohammadi, Amin, Foster, Kevin R., Yeomans, Julia M., Durham, William M.

论文摘要

在像将哺乳动物迁移到道路交通的系统中,拥挤的行动抑制了有效的集体运动。然而,观察到细菌在包含数十亿个个体的非常密集的基团中移动,而不会引起其他系统共有的僵局。在这里,我们结合了实验,细胞跟踪和基于个体的建模,以研究病原体铜绿假单胞菌,因为它使用抓钩(如Pili)统一跨表面迁移。我们表明,在高细胞密度下移动的野生型较慢的野生型被超纤维突变体的快速移动细胞被超越并胜过。使用用于研究液晶的理论,我们证明了这种作用是由拓扑缺陷的物理学介导的,即具有不同方向的细胞相遇。我们的分析表明,当彗星样缺陷相互碰撞时,快速移动的突变细胞垂直旋转并被捕获。通过更慢的移动,野生型细胞避免了这种捕获机制,从而使它们可以集体更快地迁移。我们的工作表明,液晶物理学通过为在运动中行使限制的细胞进行强有力的选择,在集体细菌运动的演变中发挥了关键作用。

In systems as diverse as migrating mammals to road traffic, crowding acts to inhibit efficient collective movement. Bacteria, however, are observed to move in very dense groups containing billions of individuals without causing the gridlock common to other systems. Here we combine experiments, cell tracking and individual-based modelling to study the pathogen Pseudomonas aeruginosa as it collectively migrates across surfaces using grappling-hook like pili. We show that the fast moving cells of a hyperpilated mutant are overtaken and outcompeted by the slower moving wild-type at high cell densities. Using theory developed to study liquid crystals, we demonstrate that this effect is mediated by the physics of topological defects, points where cells with different orientations meet one another. Our analyses reveal that when comet-like defects collide with one another, the fast-moving mutant cells rotate vertically and become trapped. By moving more slowly, wild-type cells avoid this trapping mechanism, allowing them to collectively migrate faster. Our work suggests that the physics of liquid crystals has played a pivotal role in the evolution of collective bacterial motility by exerting a strong selection for cells that exercise restraint in their movement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源