论文标题

线性解开表示和无监督的行动估计

Linear Disentangled Representations and Unsupervised Action Estimation

论文作者

Painter, Matthew, Hare, Jonathon, Prugel-Bennett, Adam

论文摘要

截止的表示学习近期引起了人们的兴趣激增,通常关注新模型,以优化许多不同的分离指标之一。基于对称性的分离表示学习引入了一个可靠的数学框架,该框架准确地定义了“线性删除表示”的含义。该框架确定这种表示将取决于作用于数据的对称组的特定分解,表明行动将通过作用于独立表示子空间的不可减至的群体表示表现出来。 Caselles-Dupre等人[2019]随后提出了第一个在VAE模型中诱导和演示线性脱离表示形式的模型。在这项工作中,我们从经验上表明,线性解开表示形式通常不存在于标准VAE模型中,而是需要更改损失格局以诱导它们。我们继续表明,对于经典的分离指标,这种表示是理想的财产。最后,我们提出了一种诱导不可减至的表示的方法,该表示可以预示对标记的动作序列的需求,这是先前工作所要求的。我们探讨了这种方法的许多属性,包括能够从不了解中间状态的动作序列中学习的能力和视觉噪声下的鲁棒性。我们还证明,它可以直接从像素中成功学习4个独立的对称性。

Disentangled representation learning has seen a surge in interest over recent times, generally focusing on new models which optimise one of many disparate disentanglement metrics. Symmetry Based Disentangled Representation learning introduced a robust mathematical framework that defined precisely what is meant by a "linear disentangled representation". This framework determined that such representations would depend on a particular decomposition of the symmetry group acting on the data, showing that actions would manifest through irreducible group representations acting on independent representational subspaces. Caselles-Dupre et al [2019] subsequently proposed the first model to induce and demonstrate a linear disentangled representation in a VAE model. In this work we empirically show that linear disentangled representations are not generally present in standard VAE models and that they instead require altering the loss landscape to induce them. We proceed to show that such representations are a desirable property with regard to classical disentanglement metrics. Finally we propose a method to induce irreducible representations which forgoes the need for labelled action sequences, as was required by prior work. We explore a number of properties of this method, including the ability to learn from action sequences without knowledge of intermediate states and robustness under visual noise. We also demonstrate that it can successfully learn 4 independent symmetries directly from pixels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源