论文标题
整体场单元光谱观测的机器学习方法:I。HII区域运动学
Machine Learning Approach to Integral Field Unit Spectroscopy Observations: I. HII Region Kinematics
论文作者
论文摘要
Sitelle是一种新型的积分野谱仪器,具有令人印象深刻的空间(11 x 11 arcmin),光谱覆盖范围和光谱分辨率(r = 1-20000)。预计信号将获得40个星系的深入观察(降至3.6x10-17ergs s-1cm-2),每个星系需要复杂而大量的时间来提取光谱信息。我们提出了一种使用卷积神经网络(CNN)来估计用Sitelle获得的发射线参数的方法,作为信号大型程序的一部分。根据墨西哥百万型数据库(3MDB)键模仿真,对我们的算法进行了训练和测试,该算法代表了HII区域的典型发射光谱。该网络的激活图证明了其从SN3(651-685 nm)中的5个发射线(例如Hα,N [ii] Doublet和S [ii] DoubleT)中提取动力学(扩展和速度)参数的能力。经过培训后,该算法在M33西南田地之一的信号计划中对真实的Sitelle观测进行了测试。在信噪比大于Hαline的区域中,CNN的精度高于5 km S-1的精度高于5 km S-1的动力学参数。更重要的是,与标准拟合程序相比,我们的CNN方法将计算时间缩短在光谱立方体上的数量级。这些结果清楚地说明了机器学习算法在将来基于IFU的任务中使用的功能。随后的工作将探讨该方法对其他光谱参数(例如关键排放线的通量)的适用性。
SITELLE is a novel integral field unit spectroscopy instrument that has an impressive spatial (11 by 11 arcmin), spectral coverage, and spectral resolution (R=1-20000). SIGNALS is anticipated to obtain deep observations (down to 3.6x10-17ergs s-1cm-2) of 40 galaxies, each needing complex and substantial time to extract spectral information. We present a method that uses Convolution Neural Networks (CNN) for estimating emission line parameters in optical spectra obtained with SITELLE as part of the SIGNALS large program. Our algorithm is trained and tested on synthetic data representing typical emission spectra for HII regions based on Mexican Million Models database(3MdB) BOND simulations. The network's activation map demonstrates its ability to extract the dynamical (broadening and velocity) parameters from a set of 5 emission lines (e.g. Hα, N[II] doublet, and S[II] doublet) in the SN3 (651-685 nm) filter of SITELLE. Once trained, the algorithm was tested on real SITELLE observations in the SIGNALS program of one of the South West fields of M33. The CNN recovers the dynamical parameters with an accuracy better than 5 km s-1 in regions with a signal-to-noise ratio greater than 15 over the Hαline. More importantly, our CNN method reduces calculation time by over an order of magnitude on the spectral cube with native spatial resolution when compared with standard fitting procedures. These results clearly illustrate the power of machine learning algorithms for the use in future IFU-based missions. Subsequent work will explore the applicability of the methodology to other spectral parameters such as the flux of key emission lines.