论文标题

语义产品搜索电子商务中的结构化产品目录

Semantic Product Search for Matching Structured Product Catalogs in E-Commerce

论文作者

Choi, Jason Ingyu, Kallumadi, Surya, Mitra, Bhaskar, Agichtein, Eugene, Javed, Faizan

论文摘要

从产品目录中检索所有与语义相关的产品是电子商务的重要问题。与Web文档相比,由于编码产品的异质方面(例如,品牌名称和产品尺寸),产品目录更加结构化和稀疏。在本文中,我们提出了一种新的语义产品搜索算法,该算法学会了使用TART Transformers作为编码器的状态来代表和汇总多个实体字段为文档表示形式。我们的实验研究了所提出的方法的两个方面:(1)现场表示和结构化匹配的有效性; (2)将词汇特征添加到语义搜索中的有效性。在使用著名电子商务平台的用户点击日志训练模型之后,我们表明我们的结果为改善产品搜索提供了有用的见解。最后,我们提出了详细的错误分析,以表明哪些类型的查询类型受现场表示形式和结构化匹配最大的受益。

Retrieving all semantically relevant products from the product catalog is an important problem in E-commerce. Compared to web documents, product catalogs are more structured and sparse due to multi-instance fields that encode heterogeneous aspects of products (e.g. brand name and product dimensions). In this paper, we propose a new semantic product search algorithm that learns to represent and aggregate multi-instance fields into a document representation using state of the art transformers as encoders. Our experiments investigate two aspects of the proposed approach: (1) effectiveness of field representations and structured matching; (2) effectiveness of adding lexical features to semantic search. After training our models using user click logs from a well-known E-commerce platform, we show that our results provide useful insights for improving product search. Lastly, we present a detailed error analysis to show which types of queries benefited the most by fielded representations and structured matching.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源