论文标题

$ \ tilde {\ Mathcal {p}} _ {\ min} $的凸的继承

Inheritance of Convexity for the $\tilde{\mathcal{P}}_{\min}$-Restricted Game

论文作者

Skoda, Alexandre

论文摘要

我们考虑在与最小分区相关的加权图上进行限制的游戏。我们在Myerson限制游戏的经典定义中替换了用特定分区$ \ tilde {\ Mathcal {p}} _ {\ min} $获得的子组件的连接组件。该分区依赖于与分区$ \ Mathcal {p} _ {\ min} $相同的原理,该份子由Grabisch and Skoda(2012)引入,但仅限于连接的联盟。更准确地说,此新分区$ \ tilde {\ Mathcal {p}} _ {\ min} $是由与联盟关联的每个连接组件中的最小重量边缘的删除诱导的。我们提供了满足从基础游戏到与$ \ tilde {\ Mathcal {p}} _ {\ min} $相关的限制游戏的凸的继承的图表的表征。

We consider a restricted game on weighted graphs associated with minimum partitions. We replace in the classical definition of Myerson restricted game the connected components of any subgraph by the sub-components obtained with a specific partition $\tilde{\mathcal{P}}_{\min}$. This partition relies on the same principle as the partition $\mathcal{P}_{\min}$ introduced by Grabisch and Skoda (2012) but restricted to connected coalitions. More precisely, this new partition $\tilde{\mathcal{P}}_{\min}$ is induced by the deletion of the minimum weight edges in each connected component associated with a coalition. We provide a characterization of the graphs satisfying inheritance of convexity from the underlying game to the restricted game associated with $\tilde{\mathcal{P}}_{\min}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源