论文标题
带有带有随机的随机重量的浅神经网络有多强大?
How Powerful are Shallow Neural Networks with Bandlimited Random Weights?
论文作者
论文摘要
我们研究了Depth-2带限制的随机神经网络的表达能力。随机网是一个神经网络,其中隐藏的层参数被随机分配冷冻,并且只有输出层参数是通过损失最小化训练的。使用随机权重作为隐藏层是一种有效的方法,可以避免在标准梯度下降学习中进行非凸优化。它在最近的深度学习理论中也被采用。尽管众所周知的事实是神经网络是一个通用近似器,但在这项研究中,我们数学上表明,当隐藏的参数分布在有界域中时,网络可能无法达到零近似误差。特别是,我们得出了一个新的非平凡近似误差下限。该证明利用了Ridgelet Analysis的技术,这是一种专为神经网络设计的谐波分析方法。该方法的灵感来自经典信号处理中的基本原理,特别是,具有有限带宽的信号可能并不总是能够完美地重新创建原始信号的想法。我们通过各种模拟研究来证实我们的理论结果,通常提供两个主要的带回家信息:(i)选择随机权重的任何分布不可行以构建通用近似值; (ii)存在合适的随机权重分配,但在某种程度上与目标函数的复杂性有关。
We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly recreate the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.