论文标题

自我播放器:一个基于ESDF的二次梯度的本地规划师

EGO-Planner: An ESDF-free Gradient-based Local Planner for Quadrotors

论文作者

Zhou, Xin, Wang, Zhepei, Ye, Hongkai, Xu, Chao, Gao, Fei

论文摘要

基于梯度的计划者被广泛用于四型局部计划,其中欧几里得签名的距离场(ESDF)对于评估梯度幅度和方向至关重要。但是,计算这样的字段具有很大的冗余性,因为轨迹优化过程仅涵盖ESDF更新范围的非常有限的子空间。在本文中,提出了一个基于ESDF的基于ESDF的计划框架,该框架大大减少了计算时间。主要的改进是,通过将碰撞轨迹与无碰撞引导路径进行比较,可以提出惩罚函数中的碰撞项。仅当轨迹遇到新的障碍时,才会存储所得的障碍信息,这使得计划者只提取必要的障碍信息。然后,如果违反了动态可行性,我们会延长时间分配。引入了各向异性曲线拟合算法,以在保持原始形状的同时调整轨迹的高阶导数。基准比较和现实世界实验验证其鲁棒性和高性能。源代码作为ROS软件包发布。

Gradient-based planners are widely used for quadrotor local planning, in which a Euclidean Signed Distance Field (ESDF) is crucial for evaluating gradient magnitude and direction. Nevertheless, computing such a field has much redundancy since the trajectory optimization procedure only covers a very limited subspace of the ESDF updating range. In this paper, an ESDF-free gradient-based planning framework is proposed, which significantly reduces computation time. The main improvement is that the collision term in the penalty function is formulated by comparing the colliding trajectory with a collision-free guiding path. The resulting obstacle information will be stored only if the trajectory hits new obstacles, making the planner only extract necessary obstacle information. Then, we lengthen the time allocation if dynamical feasibility is violated. An anisotropic curve fitting algorithm is introduced to adjust higher-order derivatives of the trajectory while maintaining the original shape. Benchmark comparisons and real-world experiments verify its robustness and high-performance. The source code is released as ROS packages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源