论文标题

tru-net:一种深度学习的方法,用于高分辨率预测降雨的预测

TRU-NET: A Deep Learning Approach to High Resolution Prediction of Rainfall

论文作者

Adewoyin, Rilwan, Dueben, Peter, Watson, Peter, He, Yulan, Dutta, Ritabrata

论文摘要

气候模型(CM)用于评估气候变化对洪水风险和强烈降水事件的影响。但是,这些数值模拟器在准确代表降水事件方面存在困难,这主要是由于在模拟大气中模拟多尺度动力学时的空间分辨率有限。为了改善高分辨率降水的预测,我们使用模型场(天气变量)的CM模拟输入进行深度学习(DL)方法,这些模拟比局部沉淀更可预测。为此,我们介绍了TRU-NET(时间复发U-NET),这是一种编码器模型,该模型具有新型的2D交叉注意机制之间的连续卷积卷层层之间,以有效地模拟多规模时空天气过程。我们使用条件连续的损耗函数来捕获零链的降雨的极端事件模式。实验表明,与在短期降水预测中普遍存在的DL模型相比,我们的模型始终达到较低的RMSE和MAE评分,并在最先进的动态天气模型的降雨预测中得到改善。此外,通过在各种培训和测试,数据制定策略下评估我们的模型的性能,我们表明,我们的深度学习方法有足够的数据来在各个季节和各个区域内输出强大的高质量结果。

Climate models (CM) are used to evaluate the impact of climate change on the risk of floods and strong precipitation events. However, these numerical simulators have difficulties representing precipitation events accurately, mainly due to limited spatial resolution when simulating multi-scale dynamics in the atmosphere. To improve the prediction of high resolution precipitation we apply a Deep Learning (DL) approach using an input of CM simulations of the model fields (weather variables) that are more predictable than local precipitation. To this end, we present TRU-NET (Temporal Recurrent U-Net), an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers to effectively model multi-scale spatio-temporal weather processes. We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall. Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction and improves upon the rainfall predictions of a state-of-the-art dynamical weather model. Moreover, by evaluating the performance of our model under various, training and testing, data formulation strategies, we show that there is enough data for our deep learning approach to output robust, high-quality results across seasons and varying regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源