论文标题

在嵌入式平台上进行实时激光雷德数据分割的多尺度互动

Multi-scale Interaction for Real-time LiDAR Data Segmentation on an Embedded Platform

论文作者

Li, Shijie, Chen, Xieyuanli, Liu, Yun, Dai, Dengxin, Stachniss, Cyrill, Gall, Juergen

论文摘要

LIDAR数据的实时语义细分对于自主驾驶的车辆至关重要,该车辆通常配备嵌入式平台并且计算资源有限。直接在点云上运行的方法使用复杂的空间聚合操作,这些操作非常昂贵且难以优化嵌入式平台。因此,它们不适用于使用嵌入式系统的实时应用。作为替代方案,基于投影的方法更有效,并且可以在嵌入式平台上运行。但是,当前基于预测的方法的准确性与基于点的方法没有相同的精度,并且使用数百万参数。因此,在本文中,我们提出了一种基于投影的方法,称为多尺度相互作用网络(Minet),该方法非常有效和准确。该网络使用具有不同尺度的多个路径,并平衡量表之间的计算资源。量表之间的其他密集交互避免了冗余计算,并使网络高效。所提出的网络在准确性,参数数量和运行时优于基于点,基于图像和投影的方法。此外,网络在嵌入式平台上每秒处理超过24个扫描,该平台高于LiDAR传感器的帧速率。因此,网络适用于自动驾驶汽车。

Real-time semantic segmentation of LiDAR data is crucial for autonomously driving vehicles, which are usually equipped with an embedded platform and have limited computational resources. Approaches that operate directly on the point cloud use complex spatial aggregation operations, which are very expensive and difficult to optimize for embedded platforms. They are therefore not suitable for real-time applications with embedded systems. As an alternative, projection-based methods are more efficient and can run on embedded platforms. However, the current state-of-the-art projection-based methods do not achieve the same accuracy as point-based methods and use millions of parameters. In this paper, we therefore propose a projection-based method, called Multi-scale Interaction Network (MINet), which is very efficient and accurate. The network uses multiple paths with different scales and balances the computational resources between the scales. Additional dense interactions between the scales avoid redundant computations and make the network highly efficient. The proposed network outperforms point-based, image-based, and projection-based methods in terms of accuracy, number of parameters, and runtime. Moreover, the network processes more than 24 scans per second on an embedded platform, which is higher than the framerates of LiDAR sensors. The network is therefore suitable for autonomous vehicles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源