论文标题

开发新的计算模型,用于评估病房设计中跌落风险

Development of a Novel Computational Model for Evaluating Fall Risk in Patient Room Design

论文作者

Novin, Roya Sabbagh, Taylor, Ellen, Hermans, Tucker, Merryweather, Andrew

论文摘要

目的:本研究的目的是确定有助于医院患者跌倒的物理环境中的因素,并提出一种计算模型来评估患者室的设计。 背景:现有的秋季风险评估工具具有可接受的敏感性和特异性水平,但是,它们仅考虑内在因素和药物,这使得预测在物理环境如何促进跌倒风险方面非常有限。 方法:我们根据身体环境和患者运动因素提供了一个计算模型,以实现跌倒风险。我们使用轨迹优化方法进行患者运动预测。 结果:我们在四个房间设计上运行了拟议的模型,作为各种房间设计类别的示例。结果表明,拟议模型在识别房间内有风险的位置的功能。 结论:我们的研究显示了所提出模型的潜在能力。由于缺乏足够的证据证明了所检查的因素,因此在这一点上不可能获得对最终评估的强大信心。建议使用定量,关系或因果设计进行更多的研究,以告知提议的患者瀑布模型。 应用:开发全面的秋季风险模型是理解和解决医院患者问题的重要一步。它可以为医疗保健决策者提供指导,以优化有效的干预措施,以降低跌倒的风险,同时促进医院室环境中的安全患者流动性。我们还可以在辅助机器人等医疗保健技术中使用它来提供知情的辅助。

Objectives: The aims of this study are to identify factors in physical environments that contribute to patient falls in hospitals and to propose a computational model to evaluate patient room designs. Background: The existing fall risk assessment tools have an acceptable level of sensitivity and specificity, however, they only consider intrinsic factors and medications, making the prediction very limited in terms of how the physical environment contributes to fall risk. Methods: We provide a computational model for risk of fall based on physical-environment and patient-motion factors. We use a trajectory optimization approach for patient motion prediction. Results: We run the proposed model on four room designs as examples of various room design categories. Results show the capabilities of the proposed model in identifying risky locations within the room. Conclusions: Our study shows the potential capabilities of the proposed model. Due to lack of enough evidence for the examined factors, it is not possible at this point to gain robust confidence in the final evaluations. More studies using quantitative, relational, or causal designs are recommended to inform the proposed model for patient falls. Application: Developing a comprehensive fall risk model is a significant step in understanding and solving the problem of patient falls in hospitals. It can provide guidance for healthcare decision makers to optimize effective interventions to reduce risk of falls while promoting safe patient mobility in the hospital room environment. We can also use it in healthcare technologies such as assistive robots to provide informed assistance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源