论文标题
有条件的熵编码,以进行有效的视频压缩
Conditional Entropy Coding for Efficient Video Compression
论文作者
论文摘要
我们提出了一个非常简单,有效的视频压缩框架,该框架仅着重于对框架之间的条件熵进行建模。与先前的基于学习的方法不同,我们通过不执行框架之间的任何形式的明确转换来降低复杂性,并假设每个帧都使用独立的最新深层图像压缩机编码。我们首先表明,对图像潜在代码之间的熵进行建模的简单体系结构与其他神经视频压缩作品和视频编解码器一样具有竞争力,同时更快,更易于实现。然后,我们在这种体系结构上提出了一种新颖的内部学习扩展,该扩展可以带来额外的10%比特率节省,而无需交换解码速度。重要的是,我们表明,我们的方法在更高的比特率UVG视频中的MS-SSIM中的H.265和其他深度学习基线的表现,并且在较低的Framerates上对所有视频编解码器的反对,而在解码方面比采用自动性入围模型要比深层模型要快数千次。
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames. Unlike prior learning-based approaches, we reduce complexity by not performing any form of explicit transformations between frames and assume each frame is encoded with an independent state-of-the-art deep image compressor. We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs while being much faster and easier to implement. We then propose a novel internal learning extension on top of this architecture that brings an additional 10% bitrate savings without trading off decoding speed. Importantly, we show that our approach outperforms H.265 and other deep learning baselines in MS-SSIM on higher bitrate UVG video, and against all video codecs on lower framerates, while being thousands of times faster in decoding than deep models utilizing an autoregressive entropy model.