论文标题

自适应多通道事件细分和特征提取以监测健康结果

Adaptive multi-channel event segmentation and feature extraction for monitoring health outcomes

论文作者

She, Xichen, Zhai, Yaya, Henao, Ricardo, Woods, Christopher W., Chiu, Christopher, Ginsburg, Geoffrey S., Song, Peter X. K., Hero, Alfred O.

论文摘要

$ \ textbf {objection} $:要开发一个多通道设备事件分割和功能提取算法,该算法对数据分发的变化非常可靠。 $ \ textbf {方法} $:我们引入了一种自适应传输学习算法,以从非平稳的多渠道时间数据进行分类和分段事件。使用多元隐藏的马尔可夫模型(HMM)和Fisher的线性判别分析(FLDA),算法可自适应地适应分布随时间的变化。提出的算法是无监督的,并学会了在不需要$ \ textIt {a先验} $的信息上标记事件的信息。该程序在人类病毒挑战(HVC)研究中从队列中收集的实验数据进行了说明,在该研究中,某些受试者暴露于H1N1流感病原体后破坏了唤醒和睡眠模式。 $ \ textbf {结果} $:仿真确定所提出的自适应算法显着优于其他事件分类方法。当应用于HVC数据中的早期时间点时,算法提取物可预测感染和感染开始时间的睡眠/唤醒特征。 $ \ textbf {结论} $:拟议的转移学习事件细分方法对于数据分配的时间变化是可靠的,可用于生成高度歧视性的事件标记的功能,用于健康监测。 $ \ textbf {timecance} $:我们的集成多传感器信号处理和传输学习方法适用于许多卧床监控应用程序。

$\textbf{Objective}$: To develop a multi-channel device event segmentation and feature extraction algorithm that is robust to changes in data distribution. $\textbf{Methods}$: We introduce an adaptive transfer learning algorithm to classify and segment events from non-stationary multi-channel temporal data. Using a multivariate hidden Markov model (HMM) and Fisher's linear discriminant analysis (FLDA) the algorithm adaptively adjusts to shifts in distribution over time. The proposed algorithm is unsupervised and learns to label events without requiring $\textit{a priori}$ information about true event states. The procedure is illustrated on experimental data collected from a cohort in a human viral challenge (HVC) study, where certain subjects have disrupted wake and sleep patterns after exposure to a H1N1 influenza pathogen. $\textbf{Results}$: Simulations establish that the proposed adaptive algorithm significantly outperforms other event classification methods. When applied to early time points in the HVC data the algorithm extracts sleep/wake features that are predictive of both infection and infection onset time. $\textbf{Conclusion}$: The proposed transfer learning event segmentation method is robust to temporal shifts in data distribution and can be used to produce highly discriminative event-labeled features for health monitoring. $\textbf{Significance}$: Our integrated multisensor signal processing and transfer learning method is applicable to many ambulatory monitoring applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源