论文标题

激发引起的随机散射理论引起的DEPHASING:与Anderson-Kubo Lineshape进行比较

Stochastic scattering theory for excitation induced dephasing: Comparison to the Anderson-Kubo lineshape

论文作者

Li, Hao, Kandada, Ajay Ram Srimath, Silva, Carlos, Bittner, Eric R.

论文摘要

在本文中,我们介绍了在存在共同发展和非平稳背景激发群体的情况下,用于光谱线形状的量子随机模型。从相互作用的骨气激子的现场理论描述开始,我们得出了一个简化的模型,通过该模型,光学激子通过其筛选的库仑耦合介导的散射耦合到不一致的背景。然后,光学激子的Heisenberg运动方程是由辅助随机种群变量驱动的,我们将其作为Ornstein-Uhlenbeck过程的解决方案。然后,ITô的引理使我们能够轻松构建和评估相关功能和响应功能。为了关注线性响应,我们将模型与经典的Anderson-Kubo模型进行了比较。尽管动机相似,但预测线形的差异很大,尤其是在不对称性方面以及随着背景人群的增加而变化。

In this paper we present a quantum stochastic model for spectroscopic line-shapes in the presence of a co-evolving and non-stationary background population of excitations. Starting from a field theory description for interacting bosonic excitons, we derive a reduced model whereby optical excitons are coupled to an incoherent background via scattering as mediated by their screened Coulomb coupling. The Heisenberg equations of motion for the optical excitons are then driven by an auxiliary stochastic population variable, which we take to be the solution of an Ornstein-Uhlenbeck process. Itô's Lemma then allows us to easily construct and evaluate correlation functions and response functions. Focusing on the linear response, we compare our model to the classic Anderson-Kubo model. While similar in motivation, there are profound differences in the predicted lineshapes, notably in terms of asymmetry, and variation with increasing background population.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源