论文标题

旋转颗粒,旋转轨道和哈密顿形式主义

Spinning particles, coadjoint orbits and Hamiltonian formalism

论文作者

Andrzejewski, Krzysztof, Gonera, Cezary, Goner, Joanna, Kosinski, Piotr, Maslanka, Pawel

论文摘要

对相对论旋转颗粒的动力学进行了广泛的分析。使用Coadhexhight Orbits方法明确描述了汉密尔顿动力学。主要的技术工具是将一般洛伦兹转化为纯提升和旋转的分解。得出了Poincare组上的等效约束动力学(被视为配置空间),并执行约束的完整分类。结果表明,第一类约束生成对应于coadhexhinexhight Orbit上某个点的稳定性亚组的局部对称性。计算用于二等约束的狄拉克支架。最后,进行规范量化,从而导致无穷小组的无限形式的庞美属组。

The extensive analysis of the dynamics of relativistic spinning particles is presented. Using the coadjoint orbits method the Hamiltonian dynamics is explicitly described. The main technical tool is the factorization of general Lorentz transformation into pure boost and rotation. The equivalent constrained dynamics on Poincare group (viewed as configuration space) is derived and complete classification of constraints is performed. It is shown that the first class constraints generate local symmetry corresponding to the stability subgroup of some point on coadjoint orbit. The Dirac brackets for second class constraints are computed. Finally, canonical quantization is performed leading to infinitesimal form of irreducible representations of Poincare group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源