论文标题

寻找零患者:医院病原体传播途径的视觉分析

In Search of Patient Zero: Visual Analytics of Pathogen Transmission Pathways in Hospitals

论文作者

Baumgartl, T., Petzold, M., Wunderlich, M., Höhn, M., Archambault, D., Lieser, M., Dalpke, A., Scheithauer, S., Marschollek, M., Eichel, V. M., Mutters, N. T., Consortium, HiGHmed, von Landesberger, T.

论文摘要

医院中病原体暴发(即细菌和病毒的爆发)可能会导致高死亡率,并大大增加医院的成本。当受感染患者的数量上升到地方性水平以上或在定义人群中病原体的通常患病率时,通常会注意到疫情。重建传输途径回到暴发的来源(患者零或索引患者)需要分析微生物数据和患者接触。这通常是由感染控制专家手动完成的。我们提出了一种新型的视觉分析方法,以支持传播途径,患者接触,暴发的进展以及住院期间患者时间表的分析。感染控制专家将我们的解决方案应用于一家德国大型医院的克雷伯氏菌肺炎。使用我们的系统,我们的专家能够将传输途径的分析扩展到更长的时间间隔(即几天的数据而不是数天)以及跨越大量病房的分析。此外,该系统能够从几天减少分析时间。在我们的最后一项研究中,来自七家德国医院的25名专家的反馈提供了证据,表明我们的解决方案为分析暴发带来了巨大的好处。它也适用于COVID-19-19S医院相关的传播。

Pathogen outbreaks (i.e., outbreaks of bacteria and viruses) in hospitals can cause high mortality rates and increase costs for hospitals significantly. An outbreak is generally noticed when the number of infected patients rises above an endemic level or the usual prevalence of a pathogen in a defined population. Reconstructing transmission pathways back to the source of an outbreak -- the patient zero or index patient -- requires the analysis of microbiological data and patient contacts. This is often manually completed by infection control experts. We present a novel visual analytics approach to support the analysis of transmission pathways, patient contacts, the progression of the outbreak, and patient timelines during hospitalization. Infection control experts applied our solution to a real outbreak of Klebsiella pneumoniae in a large German hospital. Using our system, our experts were able to scale the analysis of transmission pathways to longer time intervals (i.e., several years of data instead of days) and across a larger number of wards. Also, the system is able to reduce the analysis time from days to hours. In our final study, feedback from twenty-five experts from seven German hospitals provides evidence that our solution brings significant benefits for analyzing outbreaks. It is also applicable to COVID-19 hospital-associated transmissions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源