论文标题
在线自适应学习,用于非均质SOC的运行时资源管理
Online Adaptive Learning for Runtime Resource Management of Heterogeneous SoCs
论文作者
论文摘要
由于较低的功耗和较高的性能需求,动态资源管理已成为现代计算机和通信系统设计的主要研究领域之一。综合核心的数量,异质性水平和控制旋钮的量稳定增加。结果,系统的复杂性比我们优化和动态管理资源的能力更快。此外,由于工作负载变化和设计时间未知的大量新应用程序,离线方法是最佳的。本文首先回顾了用于预测系统性能,功率和温度的最新在线学习技术。然后,我们描述了使用两种现代方法的预测模型用于在线控制的使用:模仿学习(IL)和明确的非线性模型预测控制(NMPC)。具有16个基准的商业移动平台上的评估表明,IL方法成功地适应了未知应用程序。与现代GPU子系统多变量电源管理的最先进算法相比,NMPC的显式NMPC可节省25%的能源。
Dynamic resource management has become one of the major areas of research in modern computer and communication system design due to lower power consumption and higher performance demands. The number of integrated cores, level of heterogeneity and amount of control knobs increase steadily. As a result, the system complexity is increasing faster than our ability to optimize and dynamically manage the resources. Moreover, offline approaches are sub-optimal due to workload variations and large volume of new applications unknown at design time. This paper first reviews recent online learning techniques for predicting system performance, power, and temperature. Then, we describe the use of predictive models for online control using two modern approaches: imitation learning (IL) and an explicit nonlinear model predictive control (NMPC). Evaluations on a commercial mobile platform with 16 benchmarks show that the IL approach successfully adapts the control policy to unknown applications. The explicit NMPC provides 25% energy savings compared to a state-of-the-art algorithm for multi-variable power management of modern GPU sub-systems.