论文标题

扭曲双层石墨烯中的应变场

Strain fields in twisted bilayer graphene

论文作者

Kazmierczak, Nathanael P., Van Winkle, Madeline, Ophus, Colin, Bustillo, Karen C., Brown, Hamish G., Carr, Stephen, Ciston, Jim, Taniguchi, Takashi, Watanabe, Kenji, Bediako, D. Kwabena

论文摘要

Van der waals杂质构成对晶格不匹配或原子层之间的方位角取向的确定性控制,以产生长波长的超晶格。所得的电子相批评层次的超晶格周期性以及引入障碍和应变的局部结构变形。在这里,我们基于四维扫描透射电子显微镜介绍了Bragg干涉法,以捕获扭曲的双层石墨烯中的原子位移场,扭曲角<2°。纳米级的空间波动以扭曲角度和单轴异晶进行了统计评估,揭示了此类材料中短距离疾病的患病率。通过定量映射应变张量场,我们发现了两个不同结构弛豫的不同方案 - 与以前描述单个连续过程的模型相比,我们删除了构成这种放松的旋转模式的电子贡献。此外,我们发现施加的异质构成在鞍点区域中积累各向异性,以产生独特的条纹剪切应变阶段。因此,我们的结果建立了扭曲双层石墨烯的扭曲角度依赖性电子行为的重建力学,并提供了一个新框架,以直接可视化任何Moiré材料中的结构弛豫,混乱和应变。

Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or azimuthal orientation between atomic layers to produce long wavelength superlattices. The resulting electronic phases depend critically on the superlattice periodicity as well as localized structural deformations that introduce disorder and strain. Here, we introduce Bragg interferometry, based on four-dimensional scanning transmission electron microscopy, to capture atomic displacement fields in twisted bilayer graphene with twist angles < 2°. Nanoscale spatial fluctuations in twist angle and uniaxial heterostrain are statistically evaluated, revealing the prevalence of short-range disorder in this class of materials. By quantitatively mapping strain tensor fields we uncover two distinct regimes of structural relaxation -- in contrast to previous models depicting a single continuous process -- and we disentangle the electronic contributions of the rotation modes that comprise this relaxation. Further, we find that applied heterostrain accumulates anisotropically in saddle point regions to generate distinctive striped shear strain phases. Our results thus establish the reconstruction mechanics underpinning the twist angle dependent electronic behaviour of twisted bilayer graphene, and provide a new framework for directly visualizing structural relaxation, disorder, and strain in any moiré material.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源