论文标题

多尺度差分方程的层次深度学习时间稳定器

Hierarchical Deep Learning of Multiscale Differential Equation Time-Steppers

论文作者

Liu, Yuying, Kutz, J. Nathan, Brunton, Steven L.

论文摘要

非线性微分方程很少接收封闭形式的溶液,因此需要数值时间稳定算法才能近似溶液。此外,许多以多尺度物理学为特征的系统在许多时间尺度上都表现出动力学,因此由于数值刚度,数值集成在计算上昂贵。在这项工作中,我们开发了深神经网络时间稳定器的层次结构,以在不同的时间尺度范围内近似动态系统的流量图。所得模型纯粹是数据驱动的,并利用了多尺度动力学的特征,从而实现了数值集成和预测,既准确又高效。此外,类似的想法可用于将基于神经网络的模型与经典的数值时间stepper相提并论。我们的多尺度分层时间步长方案比当前时间稳定的算法具有重要的优势,包括(i)由于时间尺度不同的数值刚度,(ii)与领先的神经新工作结构(III)相比,(ii)在长期模拟/触发训练中的效率(ii)相比,(ii)的精度提高了。这是可行的,可以与标准数值时间步长算法集成。该方法在各种非线性动力学系统上进行了证明,包括范德尔振荡器,洛伦兹系统,库拉莫托 - 西瓦辛斯基方程和流体流通过气缸;还探索了音频和视频信号。在序列生成示例中,我们根据最先进的方法(例如LSTM,储层计算和发条RNN)对算法进行基准测试。尽管我们方法的结构简单性,但它的表现优于数值集成的竞争方法。

Nonlinear differential equations rarely admit closed-form solutions, thus requiring numerical time-stepping algorithms to approximate solutions. Further, many systems characterized by multiscale physics exhibit dynamics over a vast range of timescales, making numerical integration computationally expensive due to numerical stiffness. In this work, we develop a hierarchy of deep neural network time-steppers to approximate the flow map of the dynamical system over a disparate range of time-scales. The resulting model is purely data-driven and leverages features of the multiscale dynamics, enabling numerical integration and forecasting that is both accurate and highly efficient. Moreover, similar ideas can be used to couple neural network-based models with classical numerical time-steppers. Our multiscale hierarchical time-stepping scheme provides important advantages over current time-stepping algorithms, including (i) circumventing numerical stiffness due to disparate time-scales, (ii) improved accuracy in comparison with leading neural-network architectures, (iii) efficiency in long-time simulation/forecasting due to explicit training of slow time-scale dynamics, and (iv) a flexible framework that is parallelizable and may be integrated with standard numerical time-stepping algorithms. The method is demonstrated on a wide range of nonlinear dynamical systems, including the Van der Pol oscillator, the Lorenz system, the Kuramoto-Sivashinsky equation, and fluid flow pass a cylinder; audio and video signals are also explored. On the sequence generation examples, we benchmark our algorithm against state-of-the-art methods, such as LSTM, reservoir computing, and clockwork RNN. Despite the structural simplicity of our method, it outperforms competing methods on numerical integration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源