论文标题

基于内存的抖动:改善内存多样性的长尾数据的视觉识别

Memory-based Jitter: Improving Visual Recognition on Long-tailed Data with Diversity In Memory

论文作者

Liu, Jialun, Zhang, Jingwei, yang, Yi, Li, Wenhui, Zhang, Chi, Sun, Yifan

论文摘要

本文考虑了对长尾数据的深刻视觉识别。一般而言,我们考虑了两个应用的方案,即\ ie,深度分类和深度度量学习。在长尾数据分布中,多数类(\ ie,尾巴)仅占据相对较少的样本,并且容易缺乏类内的多样性。一种根本的解决方案是增强具有较高多样性的尾巴类别。为此,我们引入了一种名为基于内存的抖动(MBJ)的简单可靠的方法。我们观察到,在训练期间,深层模型在每次迭代后都会不断改变其参数,从而产生\ emph {重量抖动}的现象。因此,给定与输入相同的图像,该模型的两个历史版本在深度安装的空间中产生了两个不同的特征,从而导致\ emph {features jitters}。使用内存库,我们在多个训练迭代中收集这些(模型或功能)的抖动,并获得所谓的基于内存的抖动。累积的烦恼增强了尾部类别的阶级多样性,并因此改善了长尾视觉识别。通过轻微的修改,MBJ适用于两个基本的视觉识别任务\ emph {i.e。},深层图像分类和深度度量学习(用于长尾数据)。对五个长尾分类基准和两个深度度量学习基准的广泛实验表现出显着改善。此外,所达到的性能与两项任务的最新状态相提并论。

This paper considers deep visual recognition on long-tailed data. To be general, we consider two applied scenarios, \ie, deep classification and deep metric learning. Under the long-tailed data distribution, the majority classes (\ie, tail classes) only occupy relatively few samples and are prone to lack of within-class diversity. A radical solution is to augment the tail classes with higher diversity. To this end, we introduce a simple and reliable method named Memory-based Jitter (MBJ). We observe that during training, the deep model constantly changes its parameters after every iteration, yielding the phenomenon of \emph{weight jitters}. Consequentially, given a same image as the input, two historical editions of the model generate two different features in the deeply-embedded space, resulting in \emph{feature jitters}. Using a memory bank, we collect these (model or feature) jitters across multiple training iterations and get the so-called Memory-based Jitter. The accumulated jitters enhance the within-class diversity for the tail classes and consequentially improves long-tailed visual recognition. With slight modifications, MBJ is applicable for two fundamental visual recognition tasks, \emph{i.e.}, deep image classification and deep metric learning (on long-tailed data). Extensive experiments on five long-tailed classification benchmarks and two deep metric learning benchmarks demonstrate significant improvement. Moreover, the achieved performance are on par with the state of the art on both tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源