论文标题

通过集成的层次聚合和关系度量学习,树结构感知图表学习学习

Tree Structure-Aware Graph Representation Learning via Integrated Hierarchical Aggregation and Relational Metric Learning

论文作者

Qiao, Ziyue, Wang, Pengyang, Fu, Yanjie, Du, Yi, Wang, Pengfei, Zhou, Yuanchun

论文摘要

尽管图神经网络(GNN)在学习均匀图的学习节点表示方面表现出了优势,但在异质图上利用GNN仍然是一个具有挑战性的问题。主导原因是GNN通过汇总邻居的信息来学习节点表示,而不论节点类型如何。提出了一些工作,以通过利用关系或元路径来对具有不同类别的邻居进行样本,然后使用注意机制来学习不同类别的不同重要性,以减轻此问题。但是,一个限制是,不同类型的节点的学习表示形式应拥有不同的特征空间,而以上所有工作仍然将节点表示形式投影到一个特征空间中。此外,在探索了巨大的异质图后,我们确定了一个事实,即具有相同类型的多个节点总是用另一种类型连接到节点,该节点揭示了多对一的模式,又称层次树结构。但是上述所有工作都无法保留这种树结构,因为将通过聚集来消除从邻居到目标节点的确切多跳路相关性。因此,为了克服文献的局限性,我们提出了T-gnn,这是一种用于图形表示学习的树结构感知的图形神经网络模型。具体而言,提出的T-GNN由两个模块组成:(1)集成的层次聚合模块和(2)关系度量学习模块。集成的分层聚合模块旨在通过将GNN与门控复发单元相结合,以将树结构上的分层和顺序邻域信息集成到节点表示形式。关系度量学习模块旨在通过将每种类型的节点嵌入具有基于相似性指标的独特分布的特定于类型的空间来保护异质性。

While Graph Neural Network (GNN) has shown superiority in learning node representations of homogeneous graphs, leveraging GNN on heterogeneous graphs remains a challenging problem. The dominating reason is that GNN learns node representations by aggregating neighbors' information regardless of node types. Some work is proposed to alleviate such issue by exploiting relations or meta-path to sample neighbors with distinct categories, then use attention mechanism to learn different importance for different categories. However, one limitation is that the learned representations for different types of nodes should own different feature spaces, while all the above work still project node representations into one feature space. Moreover, after exploring massive heterogeneous graphs, we identify a fact that multiple nodes with the same type always connect to a node with another type, which reveals the many-to-one schema, a.k.a. the hierarchical tree structure. But all the above work cannot preserve such tree structure, since the exact multi-hop path correlation from neighbors to the target node would be erased through aggregation. Therefore, to overcome the limitations of the literature, we propose T-GNN, a tree structure-aware graph neural network model for graph representation learning. Specifically, the proposed T-GNN consists of two modules: (1) the integrated hierarchical aggregation module and (2) the relational metric learning module. The integrated hierarchical aggregation module aims to preserve the tree structure by combining GNN with Gated Recurrent Unit to integrate the hierarchical and sequential neighborhood information on the tree structure to node representations. The relational metric learning module aims to preserve the heterogeneity by embedding each type of nodes into a type-specific space with distinct distribution based on similarity metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源