论文标题
基于分层样式的运动综合网络
Hierarchical Style-based Networks for Motion Synthesis
论文作者
论文摘要
产生多样化和自然的人类运动是在动画世界中创建智能角色的长期目标之一。在本文中,我们提出了一种自我监督的方法,用于产生长期,多样和合理的行为,以实现特定的目标位置。我们提出的方法学会了通过以层次结构分解远程生成任务来对人的运动进行建模。鉴于起始状态和结束状态,记忆库用于检索运动参考作为短期剪辑生成的源材料。我们首先建议通过双线性转化建模将提供的运动材料明确地将所提供的运动材料分解为样式和内容对应物,在这种模型中,通过这两个组件的自由形式组合来实现多样的合成。然后将短距离夹连接以形成远程运动序列。没有地面真相注释,我们提出了一个参数化的双向插值方案,以确保生成结果的身体有效性和视觉自然性。在大规模骨架数据集上,我们表明所提出的方法能够综合长距离,多样和合理的运动,这在测试过程中也可以概括地可以看不见运动数据。此外,我们证明生成的序列可作为动画世界中实际物理执行的子搜索。
Generating diverse and natural human motion is one of the long-standing goals for creating intelligent characters in the animated world. In this paper, we propose a self-supervised method for generating long-range, diverse and plausible behaviors to achieve a specific goal location. Our proposed method learns to model the motion of human by decomposing a long-range generation task in a hierarchical manner. Given the starting and ending states, a memory bank is used to retrieve motion references as source material for short-range clip generation. We first propose to explicitly disentangle the provided motion material into style and content counterparts via bi-linear transformation modelling, where diverse synthesis is achieved by free-form combination of these two components. The short-range clips are then connected to form a long-range motion sequence. Without ground truth annotation, we propose a parameterized bi-directional interpolation scheme to guarantee the physical validity and visual naturalness of generated results. On large-scale skeleton dataset, we show that the proposed method is able to synthesise long-range, diverse and plausible motion, which is also generalizable to unseen motion data during testing. Moreover, we demonstrate the generated sequences are useful as subgoals for actual physical execution in the animated world.