论文标题

小残留类的亚产物

Subproducts of small residue classes

论文作者

Martin, Greg, Parvardi, Amir

论文摘要

对于任何Prime $ p $,令$ y(p)$表示最小的整数$ y $,以便每个减少的残基类$ \ pmod p $由$ \ {1,\ dots,y \} $的某个子集的产品表示。很容易看出,$ y(p)$至少与最小的二次非救助$ \ pmod p $一样大;我们证明$ y(p)\ ll_ \ varepsilon p^{1/(4 \ sqrt e)+\ varepsilon} $,从而增强了伯吉斯的经典结果。该结果是另外两个结果之间的中间力量,即Burthe的证据表明,整数最高$ o_ \ varepsilon(p^{1/(4 \ sqrt e)+\ \ varepsilon} $ ymunsch and shparlinski $ shods $ shods $ shods $ shods $ fallinski $ shods $ shods $ shods $ shods $ shods $ shods $ fallinski的pl od fallinski的p^p^pmod p $ p $ p^{p^{1/(p^{1/(4 \ sqrt e),以及red off fallinski的p。素数的子集最多可达$ o_ \ varepsilon(p^{1/(4 \ sqrt e)+\ varepsilon} $。与后者的结果不同,我们的证明是基本的,与伯吉斯的结构相似,与伯吉斯的证明是最小四边形的非沉利性。

For any prime $p$, let $y(p)$ denote the smallest integer $y$ such that every reduced residue class $\pmod p$ is represented by the product of some subset of $\{1,\dots,y\}$. It is easy to see that $y(p)$ is at least as large as the smallest quadratic nonresidue $\pmod p$; we prove that $y(p) \ll_\varepsilon p^{1/(4 \sqrt e)+\varepsilon}$, thus strengthening Burgess's classical result. This result is of intermediate strength between two other results, namely Burthe's proof that the multiplicative group $\pmod p$ is generated by the integers up to $O_\varepsilon(p^{1/(4 \sqrt e)+\varepsilon}$, and Munsch and Shparlinski's result that every reduced residue class $\pmod p$ is represented by the product of some subset of the primes up to $O_\varepsilon(p^{1/(4 \sqrt e)+\varepsilon}$. Unlike the latter result, our proof is elementary and similar in structure to Burgess's proof for the least quadratic nonresidue.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源