论文标题
WorkFlowHub:启用科学工作流程研究和开发的社区框架 - 技术报告
WorkflowHub: Community Framework for Enabling Scientific Workflow Research and Development -- Technical Report
论文作者
论文摘要
科学工作流程是现代科学计算的基石。它们用于描述需要对大量数据进行有效且可靠的管理的复杂计算应用程序,这些数据通常是在异质的,分布式资源上存储/处理的。工作流研究和开发社区已经采用了多种方法来对现有和新颖的工作流程算法和系统进行定量评估。特别是,一种常见的方法是模拟工作流执行。在先前的工作中,我们介绍了一系列工具,这些工具已用于协助Pegasus项目中的研究和开发活动,并已被其他人用于进行工作流研究。尽管它们很受欢迎,但仍有几个缺点可以防止轻松采用,维护和与生产工作流的不断发展的结构和计算要求。在这项工作中,我们提出了WorkFlowHub,这是一个社区框架,该框架提供了一系列用于分析工作流执行跟踪,生成现实的合成工作流trace和模拟工作流执行的工具的收集。我们通过将这些跟踪的模拟执行与实际的工作流执行进行比较,证明了生成的合成跟踪的现实主义。我们还将这些结果与使用先前可用的工具集合时获得的结果进行了对比。我们发现,我们的框架不仅可以用于生成代表性的合成工作流迹线(即,使用工作流结构和任务特征分布类似于从现实世界工作流执行中获得的痕迹中的框架),而且还可以在更大的范围内生成代表性的工作流轨迹。
Scientific workflows are a cornerstone of modern scientific computing. They are used to describe complex computational applications that require efficient and robust management of large volumes of data, which are typically stored/processed at heterogeneous, distributed resources. The workflow research and development community has employed a number of methods for the quantitative evaluation of existing and novel workflow algorithms and systems. In particular, a common approach is to simulate workflow executions. In previous work, we have presented a collection of tools that have been used for aiding research and development activities in the Pegasus project, and that have been adopted by others for conducting workflow research. Despite their popularity, there are several shortcomings that prevent easy adoption, maintenance, and consistency with the evolving structures and computational requirements of production workflows. In this work, we present WorkflowHub, a community framework that provides a collection of tools for analyzing workflow execution traces, producing realistic synthetic workflow traces, and simulating workflow executions. We demonstrate the realism of the generated synthetic traces by comparing simulated executions of these traces with actual workflow executions. We also contrast these results with those obtained when using the previously available collection of tools. We find that our framework not only can be used to generate representative synthetic workflow traces (i.e., with workflow structures and task characteristics distributions that resembles those in traces obtained from real-world workflow executions), but can also generate representative workflow traces at larger scales than that of available workflow traces.