论文标题

纠缠,非热性和二元性

Entanglement, non-Hermiticity, and duality

论文作者

Chen, Li-Mei, Chen, Shuai A., Ye, Peng

论文摘要

通常,二元性过程使能量谱不变。在本文中,我们提供了一种二元性,以保持纠缠频谱不变,以诊断非相互作用的非交互式费米子系统的量子纠缠。我们将注意力限制在具有完整的生物征收特征向量和完全真实的能量谱的非官方系统上。原始系统具有降低的密度矩阵$ρ_\ MATHRM {O} $,而真实空间是通过投影操作员$ \ Mathcal {r} _ {\ Mathrm o} $分区的。双重化后,我们获得了一个新的减少密度矩阵$ρ_ {\ mathrm {d}} $和一个新的真实空间投影仪$ \ mathcal {r} _ {\ mathrm d} $。值得注意的是,纠缠光谱和纠缠熵保持不变。受双重性的启发,我们在$ \ Mathcal r _ {\ Mathrm {O}} $上定义了两种类型的非Hermitian模型。在``非重点模型''示例的类型I中,至少存在一种双重性,因此$ρ_ {\ mathrm {d}} $是Hermitian。换句话说,具有给定$ \ Mathcal {r} _ {\ Mathrm {o}} $的I型非热模型的纠缠信息完全由具有$ \ Mathcal {r} _ {\ Mathrm {d}} $的Hermitian模型完全控制。结果,我们被允许应用Hermitian系统的已知结果,以有效地获得I型模型的纠缠特性。另一方面,II型模型的双重二重奏以``非热su-schrieffer-heeger型号''举例说明了。出于实际目的,二元性为非官方系统的纠缠提供了潜在的\ textit {有效}计算途径。通过连接不同的模型,二元性还可以在量子纠缠中发挥的非热性性的琐碎或非琐事作用,从纠缠的角度铺平了潜在系统的分类和对非炎症系统的表征的方式。

Usually duality process keeps energy spectrum invariant. In this paper, we provide a duality, which keeps entanglement spectrum invariant, in order to diagnose quantum entanglement of non-Hermitian non-interacting fermionic systems. We limit our attention to non-Hermitian systems with a complete set of biorthonormal eigenvectors and an entirely real energy spectrum. The original system has a reduced density matrix $ρ_\mathrm{o}$ and the real space is partitioned via a projecting operator $\mathcal{R}_{\mathrm o}$. After dualization, we obtain a new reduced density matrix $ρ_{\mathrm{d}}$ and a new real space projector $\mathcal{R}_{\mathrm d}$. Remarkably, entanglement spectrum and entanglement entropy keep invariant. Inspired by the duality, we defined two types of non-Hermitian models, upon $\mathcal R_{\mathrm{o}}$ is given. In type-I exemplified by the ``non-reciprocal model'', there exists at least one duality such that $ρ_{\mathrm{d}}$ is Hermitian. In other words, entanglement information of type-I non-Hermitian models with a given $\mathcal{R}_{\mathrm{o}}$ is entirely controlled by Hermitian models with $\mathcal{R}_{\mathrm{d}}$. As a result, we are allowed to apply known results of Hermitian systems to efficiently obtain entanglement properties of type-I models. On the other hand, the duals of type-II models, exemplified by ``non-Hermitian Su-Schrieffer-Heeger model'', are always non-Hermitian. For the practical purpose, the duality provides a potentially \textit{efficient} computation route to entanglement of non-Hermitian systems. Via connecting different models, the duality also sheds lights on either trivial or nontrivial role of non-Hermiticity played in quantum entanglement, paving the way to potentially systematic classification and characterization of non-Hermitian systems from the entanglement perspective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源