论文标题

点数的点在数字字段上

Point counting for foliations over number fields

论文作者

Binyamini, Gal

论文摘要

我们考虑一个代数品种及其叶片,都在一个数字字段上定义。我们证明了叶面叶与互补维度的亚变量(也定义在数字场)之间的相交的几何复杂性的上限。我们的边界在多个百货上取决于程度,对数高度和对数距离到某个\ emph {loce formph {locus formph emph}的距离。在叶叶的适当条件下,我们表明这意味着对使用此类叶子定义的先验集中的代数值的数量,在程度和高度上有一个结合的多项式。 我们推断出多磷几何形状的几个结果。 i)遵循Masser-Zannier之后,我们证明,给出了一对部分$ p,q $ q $的非等异常的椭圆曲线平方家族,这些椭圆形曲线不满足,每当$ p,q $同时扭转时,它们的扭转顺序就会有效地在n sect和logs $ p. p上,以有效地限制。特别是,在多项式时间内,这种同时扭转点的集合可以有效地计算。 ii)pila之后,我们证明给定$ v \ subset \ mathbb {c}^n $,对于最大特殊亚比的程度和歧视性,有一个(无效的)上限,v的程度和volightimial v polyenmial。特别是可以得出的是,模块化曲线的André-oort在多项式时间内是可决定的(通过算法取决于通用,无效的西​​格尔常数)。 iii)在施密特之后,我们表明我们的计数结果意味着在先前使用戴维(David)先前使用超越方法获得的类型的椭圆曲线上的扭转点的Galois-Orbit下限。

We consider an algebraic variety and its foliation, both defined over a number field. We prove upper bounds for the geometric complexity of the intersection between a leaf of the foliation and a subvariety of complementary dimension (also defined over a number field). Our bounds depend polynomially on the degrees, logarithmic heights, and the logarithmic distance to a certain \emph{locus of unlikely intersections}. Under suitable conditions on the foliation, we show that this implies a bound, polynomial in the degree and height, for the number of algebraic points on transcendental sets defined using such foliations. We deduce several results in Diophantine geometry. i) Following Masser-Zannier, we prove that given a pair of sections $P,Q$ of a non-isotrivial family of squares of elliptic curves that do not satisfy a constant relation, whenever $P,Q$ are simultaneously torsion their order of torsion is bounded effectively by a polynomial in the degrees and log-heights of the sections $P,Q$. In particular the set of such simultaneous torsion points is effectively computable in polynomial time. ii) Following Pila, we prove that given $V\subset\mathbb{C}^n$ there is an (ineffective) upper bound, polynomial in the degree and log-height of V, for the degrees and discriminants of maximal special subvarieties. In particular it follows that André-Oort for powers of the modular curve is decidable in polynomial time (by an algorithm depending on a universal, ineffective Siegel constant). iii) Following Schmidt, we show that our counting result implies a Galois-orbit lower bound for torsion points on elliptic curves of the type previously obtained using transcendence methods by David.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源