论文标题
神经杂交:基于神经的图像变形
Neural Crossbreed: Neural Based Image Metamorphosis
论文作者
论文摘要
我们提出了神经杂交,这是一种馈送前向神经网络,可以学习潜在空间中输入图像的语义变化以创造变形效果。由于网络学习语义变化,因此可以生成一系列有意义的中间图像的顺序,而无需用户指定明确的对应关系。此外,语义变化学习使得在包含具有明显不同姿势或相机视图的对象的图像之间执行变形。此外,就像在常规的变形技术中一样,我们的变形网络可以通过删除内容和样式转移以供富裕的可用性分别处理形状和外观过渡。我们准备使用预训练的Biggan进行变形的训练数据集,该数据集通过以预期的形态值插值来生成中间图像。这是使用预先训练的生成模型来解决图像变形以学习语义转换的第一次尝试。实验表明,神经杂交产生高质量的变形图像,克服了与常规方法相关的各种局限性。此外,可以进一步扩展神经杂交,以用于多样化的应用,例如多图像变形,外观传递和视频框架插值。
We propose Neural Crossbreed, a feed-forward neural network that can learn a semantic change of input images in a latent space to create the morphing effect. Because the network learns a semantic change, a sequence of meaningful intermediate images can be generated without requiring the user to specify explicit correspondences. In addition, the semantic change learning makes it possible to perform the morphing between the images that contain objects with significantly different poses or camera views. Furthermore, just as in conventional morphing techniques, our morphing network can handle shape and appearance transitions separately by disentangling the content and the style transfer for rich usability. We prepare a training dataset for morphing using a pre-trained BigGAN, which generates an intermediate image by interpolating two latent vectors at an intended morphing value. This is the first attempt to address image morphing using a pre-trained generative model in order to learn semantic transformation. The experiments show that Neural Crossbreed produces high quality morphed images, overcoming various limitations associated with conventional approaches. In addition, Neural Crossbreed can be further extended for diverse applications such as multi-image morphing, appearance transfer, and video frame interpolation.