论文标题

带有零拓扑熵的圆形图的某些特性

Some properties of circle maps with zero topological entropy

论文作者

Yang, Yini

论文摘要

For a circle map $f\colon\mathbb{S}\to\mathbb{S}$ with zero topological entropy, we show that a non-diagonal pair $\langle x,y\rangle\in \mathbb{S}\times \mathbb{S}$ is non-separable if and only if it is an IN-pair if and only if it is an IT对。我们还表明,如果圆形图为拓扑为空,则每个开放盖的最大图案熵是多项式顺序。

For a circle map $f\colon\mathbb{S}\to\mathbb{S}$ with zero topological entropy, we show that a non-diagonal pair $\langle x,y\rangle\in \mathbb{S}\times \mathbb{S}$ is non-separable if and only if it is an IN-pair if and only if it is an IT-pair. We also show that if a circle map is topological null then the maximal pattern entropy of every open cover is of polynomial order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源