论文标题
Fréchet和(lb)序列空间由离散cesàro空间的双巴拉克空间引起
Fréchet and (LB) sequence spaces induced by dual Banach spaces of discrete Cesàro spaces
论文作者
论文摘要
fréchet(res. \(lb))序列空间$ ces(p+):= \ cap_ {r> p} ces(r),1 \ leq p <\ infty $(ress.cees(p-):= \ cup_ {1 <p} ces(r) $ \ ell_ {p+} $(resp。,$ \ ell_ {p _ { - }})。$这两个类别的不可验证的空间$ ces(p+),ces(p-)$均通过反射式banach序列空间$ ces(p),1 <p <p <p <p <p <p <d $ diul q diul q diul q diul q diul qual q diul q diul q diul q diul q diul q diul q diul q diul q diul q diul q diul q。 G. \ Bennett,A。\ Jagers等人研究了离散的cesàrospaces $ ces(p),1 <p <\ infty。我们的目的是详细研究相应的序列空间$ d(p+)$和$ d(p-),$,以前尚未考虑过。他们的某些属性与$ CES(P+),CES(P-)$具有相似之处,但它们也表现出差异。例如,$ ces(p+)$是订单1的功率系列空间的同构,而$ d(p+)$对这种无限订单的空间是同构的。每个空间$ ces(p+),ces(p-)$都符合绝对基础,但是,没有一个空间$ d(p+),d(p-)$具有绝对的基础。
The Fréchet (resp.\ (LB)) sequence spaces $ces(p+) := \cap_{r > p} ces(r), 1 \leq p < \infty $ (resp.\ $ ces (p-) := \cup_{ 1 < r < p} ces (r), 1 < p \leq \infty),$ are known to be very different to the classical sequence spaces $ \ell_ {p+} $ (resp., $ \ell_{p_{-}}).$ Both of these classes of non-normable spaces $ ces (p+), ces (p-)$ are defined via the family of reflexive Banach sequence spaces $ ces (p), 1 < p < \infty .$ The dual Banach spaces $ d (q), 1 < q < \infty ,$ of the discrete Cesàro spaces $ ces (p), 1 < p < \infty,$ were studied by G.\ Bennett, A.\ Jagers and others. Our aim is to investigate in detail the corresponding sequence spaces $ d (p+) $ and $ d (p-),$ which have not been considered before. Some of their properties have similarities with those of $ ces (p+), ces (p-)$ but, they also exhibit differences. For instance, $ ces (p+)$ is isomorphic to a power series Fréchet space of order 1, whereas $ d (p+) $ is isomorphic to such a space of infinite order. Every space $ ces (p+), ces (p-) $ admits an absolute basis but, none of the spaces $ d (p+), d (p-)$ have any absolute basis.