论文标题
在300 mm SOI CMOS平台上制造的Ultrahigh-Q一维光子水晶纳米腔中的有效共振管理
Efficient resonance management in ultrahigh-Q one-dimensional photonic crystal nanocavities fabricated on 300 mm SOI CMOS platform
论文作者
论文摘要
光子晶体(PHC)纳米腔在光限制和操纵方面表现出独特的功能。因此,它们对新型基于共振的光子集成电路(图片)的设计变得有吸引力。但是,在这里出现了两个基本挑战 - 如何使用与大容量制造兼容的标准制造工艺实现超高Q PHC腔,以及如何有效地将它们与其他标准构建块集成在一起,可在退出的PIC平台中使用。在这项工作中,我们展示了通过光刻在300毫米SOI晶片上制造的Ultrahigh-Q 1D PHC纳米腔,创Q的Q系数高达84万。此外,我们通过将氧化腔与访问波导耦合并实现两个关键组件:Notch过滤器和窄带反射器,从而显示出有效的模式管理。特别是,它们允许在所需的谐振波长下单波长和多波长操作,同时抑制在广泛的波长范围内(> 100 nm)的所有其他波长。与传统的空腔相比,这为在波长选择性和模式数量的控制方面具有更大的自由度提供了一个精确实现共振的绝妙策略。鉴于它们与光刻和紧凑的足迹的兼容性,实现的1D PHC纳米腔对于在大规模设计紧凑和基于新颖的基于共鸣的光子成分方面具有深远的意义。
Photonic crystal (PhC) nanocavities have demonstrated unique capabilities in terms of light confinement and manipulation. As such, they are becoming attractive for the design of novel resonance-based photonic integrated circuits (PICs). Here two essential challenges arise however - how to realize ultrahigh-Q PhC cavities using standard fabrication processes compatible with large volume fabrication, and how to efficiently integrate them with other standard building blocks, available in exiting PIC platforms. In this work, we demonstrate ultrahigh-Q 1D PhC nanocavities fabricated on a 300 mm SOI wafer by optical lithography, with a record Q factor of up to 0.84 million. Moreover, we show efficient mode management in those oxide embedded cavities by coupling them with an access waveguide and realize two critical components: notch filters and narrow-band reflectors. In particular, they allow both single-wavelength and multi-wavelength operation, at the desired resonant wavelengths, while suppressing all other wavelengths over a broad wavelength range (>100 nm). Compared to traditional cavities, this offers a fantastic strategy for implementing resonances precisely in PIC designs with more freedom in terms of wavelength selectivity and the control of mode number. Given their compatibility with optical lithography and compact footprint, the realized 1D PhC nanocavities will be of profound significance for designing compact and novel resonance-based photonic components on large scale.