论文标题

物联网设备分类的成本感知功能选择

Cost-aware Feature Selection for IoT Device Classification

论文作者

Chakraborty, Biswadeep, Divakaran, Dinil Mon, Nevat, Ido, Peters, Gareth W., Gurusamy, Mohan

论文摘要

从多个角度(包括安全性和隐私方面),将IoT设备分类为不同类型至关重要。最近的作品探索了用于指纹(或分类)IoT设备的机器学习技术,结果令人鼓舞。但是,现有作品假设用于构建机器学习模型的功能很容易获得,或者可以轻松从网络流量中提取。换句话说,他们不考虑与特征提取相关的成本。在这项工作中,我们采用了更现实的方法,并认为功能提取的成本和不同功能的成本不同。我们还从当前将错误分类损失视为二进制价值的实践中迈出了一步,并根据错误分类绩效为不同的损失提供了理由。因此,更重要的是,我们介绍了物联网设备分类的风险概念。我们定义并制定了成本吸引的物联网设备分类的问题。这是一个组合优化问题,我们开发了一种新型算法,以使用基于跨凝集(CE)的随机优化技术以快速有效的方式解决它。使用真实设备的流量,我们演示了基于CE的算法在选择错误分类风险的功能中的能力,同时将功能提取成本保持在指定的限制范围内。

Classification of IoT devices into different types is of paramount importance, from multiple perspectives, including security and privacy aspects. Recent works have explored machine learning techniques for fingerprinting (or classifying) IoT devices, with promising results. However, existing works have assumed that the features used for building the machine learning models are readily available or can be easily extracted from the network traffic; in other words, they do not consider the costs associated with feature extraction. In this work, we take a more realistic approach, and argue that feature extraction has a cost, and the costs are different for different features. We also take a step forward from the current practice of considering the misclassification loss as a binary value, and make a case for different losses based on the misclassification performance. Thereby, and more importantly, we introduce the notion of risk for IoT device classification. We define and formulate the problem of cost-aware IoT device classification. This being a combinatorial optimization problem, we develop a novel algorithm to solve it in a fast and effective way using the Cross-Entropy (CE) based stochastic optimization technique. Using traffic of real devices, we demonstrate the capability of the CE based algorithm in selecting features with minimal risk of misclassification while keeping the cost for feature extraction within a specified limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源