论文标题

与反应性边界的薄域中流量和运输问题的多尺度尺寸降低

Multiscale dimension reduction for flow and transport problems in thin domain with reactive boundaries

论文作者

Vasilyeva, Maria, Alekseev, Valentin, Chung, Eric T., Efendiev, Yalchin

论文摘要

在本文中,我们考虑在薄域中流动和运输问题。论文中考虑的数学模型由速度,压力和浓度方程系统描述,其中流动由Stokes方程描述,传输用不稳定的对流扩散方程来描述,其墙壁上具有非均匀边界条件(反应性边界)。我们从非结构化网格上问题的有限元近似开始,并将其用作两维模型问题的参考解决方案。细网格近似在网格级别上解析复杂的几何形状,并导致一个大型的离散方程系统,该方程式在计算上的求解价格很高。为了减少离散系统的大小,我们开发了一种多尺度模型还原技术,在该技术中,我们构建了本地的多尺度函数,以在粗网格上生成较低维度的模型。提出的多尺度模型还原基于不连续的Galerkin通用多尺度有限元方法(DG-GMSGEM)。在用于流量问题的DG-GMSFEM中,我们首先构建粗网格单元之间每个接口的快照空间以捕获可能的流量。为了减少快照空间大小,我们通过局部光谱问题的解决方案进行尺寸降低,并使用对应于最小特征值作为多尺度基函数的特征向量,以在粗网格上进行近似。对于运输问题,我们为粗网格单元之间的每个接口构建了多尺度基础函数,并提出了其他基础函数,以捕获墙壁上的非均匀边界条件。最后,我们将为两个和三维问题的三个测试几何形状提供一些数值模拟,以证明该方法的性能。

In this paper, we consider flow and transport problems in thin domains. The mathematical model considered in the paper is described by a system of equations for velocity, pressure, and concentration, where the flow is described by the Stokes equations and the transport is described by an unsteady convection-diffusion equation with non-homogeneous boundary conditions on walls (reactive boundaries). We start with the finite element approximation of the problem on unstructured grids and use it as a reference solution for two and three-dimensional model problems. Fine grid approximation resolves complex geometries on the grid level and leads to a large discrete system of equations that is computationally expensive to solve. To reduce the size of the discrete systems, we develop a multiscale model reduction technique, where we construct local multiscale basis functions to generate a lower-dimensional model on a coarse grid. The proposed multiscale model reduction is based on the Discontinuous Galerkin Generalized Multiscale Finite Element Method (DG-GMsGEM). In DG-GMsFEM for flow problems, we start with constructing the snapshot space for each interface between coarse grid cells to capture possible flows. For the reduction of the snapshot space size, we perform a dimension reduction via a solution of the local spectral problem and use eigenvectors corresponding to the smallest eigenvalues as multiscale basis functions for the approximation on the coarse grid. For the transport problem, we construct multiscale basis functions for each interface between coarse grid cells and present additional basis functions to capture non-homogeneous boundary conditions on walls. Finally, we will present some numerical simulations for three test geometries for two and three-dimensional problems to demonstrate the method's performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源