论文标题
活动门控:摇摆扩散通道
Active gating: rocking diffusion channels
论文作者
论文摘要
当开放系统的接触在不同的储层之间翻转时,产生的非平衡显示了动态活性的增加。我们研究了一维对称(SEP)和不对称(ASEP)排除模型的活动门控,其中随机交换了粒子入口和退出的左/右边界速率。这种摇摆使SEP在空间上对称,平均而言没有边界驾驶。然而,熵产生的摇摆速率增加。对于ASEP,可以使用边缘聚类的颗粒来获得非单调密度曲线。在完全不对称的情况下,根据边界速率,由于摇摆超过有限阈值,因此散装向最大电流相。我们研究所得的密度曲线和电流作为摇动速率的功能。
When the contacts of an open system flip between different reservoirs, the resulting nonequilibrium shows increased dynamical activity. We investigate such active gating for one-dimensional symmetric (SEP) and asymmetric (ASEP) exclusion models where the left/right boundary rates for entrance and exit of particles are exchanged at random times. Such rocking makes SEP spatially symmetric and on average there is no boundary driving; yet the entropy production increases in the rocking rate. For ASEP a non-monotone density profile can be obtained with particles clustering at the edges. In the totally asymmetric case, there is a bulk transition to a maximal current phase as the rocking exceeds a finite threshold, depending on the boundary rates. We study the resulting density profiles and current as functions of the rocking rate.