论文标题

在中等密集的图上,在几乎线性的时间内匹配的两部分匹配

Bipartite Matching in Nearly-linear Time on Moderately Dense Graphs

论文作者

Brand, Jan van den, Lee, Yin-Tat, Nanongkai, Danupon, Peng, Richard, Saranurak, Thatchaphol, Sidford, Aaron, Song, Zhao, Wang, Di

论文摘要

我们提出了一个$ \ tilde o(m+n^{1.5})$ - 时间随机算法,用于最大的基数双方匹配和相关问题(例如,转移,最短路径和最佳路径和最佳传输),$ m $ - 对于中等密度的图形上的最大基数双方匹配,即$ m =ω(n^{1.5})$,我们的算法在输入大小上几乎是线性运行的,并且构成了经典$ o(m \ sqrt {n})$ - 时间[dinic 1970; Hopcroft-Karp 1971; Karzanov 1973]和$ \ tilde O(n^ω)$ - 时间算法[Ibarra-Moran 1981; Mucha-sankowski 2004](目前$ω\约2.373 $)。在稀疏图上,即当$ m = n^{9/8 +δ} $对于任何常数$δ> 0 $时,我们的结果会在[Madry 2013]和[liu-sidford 2020b,2020a]的最新进展中得到改善,这些进步实现了$ \ tilde o(m^{m^{4/3 + o(1))$运行。 我们通过结合和推进内部点方法(IPM)和动态图算法的最新研究线来获得这些结果。首先,我们简化并改善了[V.D.Brand-Lee-Sidford-Song 2020]的IPM,提供了一个普通的原始二重性IPM框架和基于新的采样技术,用于处理由近似线性系统溶解器引起的可观性。其次,我们提供了一种简单的套期时间算法,用于在扩展器上检测和采样电流中的高能边缘,并表明,当与动态扩展器分解的最新进展相结合时,这会产生有效的数据结构,以维持[V.D.Brand等人]和我们的新IPMS和我们的新IPMS。结合使用此通用机械可产生更简单的$ \ tilde o(n \ sqrt {m})$时间算法,以基于对数屏障功能和我们的最新$ \ tilde o(m+n^{1.5})$ time algorithm,用于基于barriate for [lee sip forder fordefford forderford forder, ])。

We present an $\tilde O(m+n^{1.5})$-time randomized algorithm for maximum cardinality bipartite matching and related problems (e.g. transshipment, negative-weight shortest paths, and optimal transport) on $m$-edge, $n$-node graphs. For maximum cardinality bipartite matching on moderately dense graphs, i.e. $m = Ω(n^{1.5})$, our algorithm runs in time nearly linear in the input size and constitutes the first improvement over the classic $O(m\sqrt{n})$-time [Dinic 1970; Hopcroft-Karp 1971; Karzanov 1973] and $\tilde O(n^ω)$-time algorithms [Ibarra-Moran 1981; Mucha-Sankowski 2004] (where currently $ω\approx 2.373$). On sparser graphs, i.e. when $m = n^{9/8 + δ}$ for any constant $δ>0$, our result improves upon the recent advances of [Madry 2013] and [Liu-Sidford 2020b, 2020a] which achieve an $\tilde O(m^{4/3+o(1)})$ runtime. We obtain these results by combining and advancing recent lines of research in interior point methods (IPMs) and dynamic graph algorithms. First, we simplify and improve the IPM of [v.d.Brand-Lee-Sidford-Song 2020], providing a general primal-dual IPM framework and new sampling-based techniques for handling infeasibility induced by approximate linear system solvers. Second, we provide a simple sublinear-time algorithm for detecting and sampling high-energy edges in electric flows on expanders and show that when combined with recent advances in dynamic expander decompositions, this yields efficient data structures for maintaining the iterates of both [v.d.Brand et al.] and our new IPMs. Combining this general machinery yields a simpler $\tilde O(n \sqrt{m})$ time algorithm for matching based on the logarithmic barrier function, and our state-of-the-art $\tilde O(m+n^{1.5})$ time algorithm for matching based on the [Lee-Sidford 2014] barrier (as regularized in [v.d.Brand et al.]).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源