论文标题

基于CNN的超声图像重建超快速位移跟踪

CNN-Based Ultrasound Image Reconstruction for Ultrafast Displacement Tracking

论文作者

Perdios, Dimitris, Vonlanthen, Manuel, Martinez, Florian, Arditi, Marcel, Thiran, Jean-Philippe

论文摘要

由于它有能力在多个基尔兹(Musthertz)中获取全景框架,因此超声超声成像解锁了人体中快速变化的物理现象的分析,其开创性应用(例如心血管系统中的超敏感流程成像)或剪切波弹性弹力。这些运动估计技术可实现的准确性强烈取决于两个矛盾的要求:高质量的连续帧和高帧速率。实际上,通常可以通过增加转导的超快采集的数量来提高图像质量,但以降低的框架速率和可能的运动伪像以牺牲。为了在毫不妥协的帧速率上实现准确的运动估计并免疫运动伪影,提出的方法依赖于单个超快采集来重建高质量的高质量帧,并且仅连续两个框架来获得2D位移估计。为此,我们部署了一种基于卷积神经网络的图像重建方法,并基于互相关结合了斑点跟踪算法。在平面波成像的背景下进行的数值和体内实验表明,所提出的方法能够估算侧叶和侧瓣伪像的存在的区域中的位移,从而阻止了任何涉及常规延迟式光束成像的最先进技术的位移估计。因此,在超敏感的心血管运动和流动分析或剪切波弹性图等应用中,提出的方法可以解锁超声超声的全部潜力。

Thanks to its capability of acquiring full-view frames at multiple kilohertz, ultrafast ultrasound imaging unlocked the analysis of rapidly changing physical phenomena in the human body, with pioneering applications such as ultrasensitive flow imaging in the cardiovascular system or shear-wave elastography. The accuracy achievable with these motion estimation techniques is strongly contingent upon two contradictory requirements: a high quality of consecutive frames and a high frame rate. Indeed, the image quality can usually be improved by increasing the number of steered ultrafast acquisitions, but at the expense of a reduced frame rate and possible motion artifacts. To achieve accurate motion estimation at uncompromised frame rates and immune to motion artifacts, the proposed approach relies on single ultrafast acquisitions to reconstruct high-quality frames and on only two consecutive frames to obtain 2-D displacement estimates. To this end, we deployed a convolutional neural network-based image reconstruction method combined with a speckle tracking algorithm based on cross-correlation. Numerical and in vivo experiments, conducted in the context of plane-wave imaging, demonstrate that the proposed approach is capable of estimating displacements in regions where the presence of side lobe and grating lobe artifacts prevents any displacement estimation with a state-of-the-art technique that relies on conventional delay-and-sum beamforming. The proposed approach may therefore unlock the full potential of ultrafast ultrasound, in applications such as ultrasensitive cardiovascular motion and flow analysis or shear-wave elastography.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源