论文标题

内部$ \ infty $ - 依赖类型理论的分类模型:朝2ltt进食hott

Internal $\infty$-Categorical Models of Dependent Type Theory: Towards 2LTT Eating HoTT

论文作者

Kraus, Nicolai

论文摘要

使用依赖类型理论将依赖类型理论的语法形式化是一个非常活跃的研究主题,并以“类型理论饮食本身”或“类型理论中的类型理论”的名义进行。大多数方法至少基于与家庭(CWF)的Dybjer类别,并带有上下文类型的类型,一种类型的家庭TY在IT建模类型上进行了索引,依此类推。这在类型理论的版本中效果很好,在该版本中,唯一身份证明(UIP)的原理具有。然而,在同型类型理论(HOTT)中,这是一个长期存在的,经常讨论的开放问题,是否“食用自身”,并且可以用作自己的解释器。基本的基本困难似乎是,在没有UIP的情况下,类别不适合捕获类型理论。 在本文中,我们与家人($ \ infty $ -CWF)一起开发了$ \ infty $ - 类别的概念。所使用的高级类别的方法取决于先前建议的半性能类型,并具有新的身份替代结构,允许单位变化和非单位变化。类型理论的宇宙以及内部化语法都是模型,尽管它仍然是后者是初始的一种猜想。为了避免构建半多重类型的已知未解决的问题,该定义以两级类型理论(2LTT)表示。 除了引入$ \ infty $ -CWF之外,该论文还解释了类型理论中1类的缺点,而没有UIP以及内部高维类别的困难和方法。

Using dependent type theory to formalise the syntax of dependent type theory is a very active topic of study and goes under the name of "type theory eating itself" or "type theory in type theory." Most approaches are at least loosely based on Dybjer's categories with families (CwF's) and come with a type CON of contexts, a type family TY indexed over it modelling types, and so on. This works well in versions of type theory where the principle of unique identity proofs (UIP) holds. In homotopy type theory (HoTT) however, it is a long-standing and frequently discussed open problem whether the type theory "eats itself" and can serve as its own interpreter. The fundamental underlying difficulty seems to be that categories are not suitable to capture a type theory in the absence of UIP. In this paper, we develop a notion of $\infty$-categories with families ($\infty$-CwF's). The approach to higher categories used relies on the previously suggested semi-Segal types, with a new construction of identity substitutions that allow for both univalent and non-univalent variations. The type-theoretic universe as well as the internalised syntax are models, although it remains a conjecture that the latter is initial. To circumvent the known unsolved problem of constructing semisimplicial types, the definition is presented in two-level type theory (2LTT). Apart from introducing $\infty$-CwF's, the paper explains the shortcomings of 1-categories in type theory without UIP as well as the difficulties of and approaches to internal higher-dimensional categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源