论文标题
嘈杂数据的数值差异:一个统一的多目标优化框架
Numerical differentiation of noisy data: A unifying multi-objective optimization framework
论文作者
论文摘要
嘈杂的测量数据的计算衍生物在物理,工程和生物科学中无处不在,这通常是开发动态模型或设计控制的关键步骤。不幸的是,数值差异化的数学公式通常是不适合的,研究人员经常诉诸于选择许多计算方法及其参数之一的\ textIt {Ad hoc}过程。在这项工作中,我们采用了一种原则性的方法,并提出了一个多目标优化框架,以选择最小化损失函数的参数,以平衡衍生估计的忠诚度和平滑度。我们的框架具有三个重要的优势。首先,选择多个参数的任务减少为选择一个超参数。其次,如果未知地面数据是未知的,我们提供了一种启发式方法,用于根据数据的功率谱和时间分辨率自动选择此超参数。第三,超参数的最佳值在不同的分化方法中是一致的,因此我们的方法统一了巨大的数值分化方法,并促进了对结果的无偏比较。最后,我们提供了广泛的开源Python库\ texttt {pynumdiff},以促进轻松应用到不同的数据集(https://github.com/florisvb/pynumdiff)。
Computing derivatives of noisy measurement data is ubiquitous in the physical, engineering, and biological sciences, and it is often a critical step in developing dynamic models or designing control. Unfortunately, the mathematical formulation of numerical differentiation is typically ill-posed, and researchers often resort to an \textit{ad hoc} process for choosing one of many computational methods and its parameters. In this work, we take a principled approach and propose a multi-objective optimization framework for choosing parameters that minimize a loss function to balance the faithfulness and smoothness of the derivative estimate. Our framework has three significant advantages. First, the task of selecting multiple parameters is reduced to choosing a single hyper-parameter. Second, where ground-truth data is unknown, we provide a heuristic for automatically selecting this hyper-parameter based on the power spectrum and temporal resolution of the data. Third, the optimal value of the hyper-parameter is consistent across different differentiation methods, thus our approach unifies vastly different numerical differentiation methods and facilitates unbiased comparison of their results. Finally, we provide an extensive open-source Python library \texttt{pynumdiff} to facilitate easy application to diverse datasets (https://github.com/florisvb/PyNumDiff).