论文标题
晶体和无序固体中热传输的有效的非谐晶格动力学计算
Efficient Anharmonic Lattice Dynamics Calculations of Thermal Transport in Crystalline and Disordered Solids
论文作者
论文摘要
了解半导体和绝缘子中的热传输至关重要,因为它在电子产品和可再生能源收集和转换中具有技术影响。 Anharmonic Lattice Dynamics为描述纳米级的热运输提供了有力的框架。该方法的优点之一是,它自然包含由于原子振动引起的量子效应,这些效应是在纳米技术中广泛使用的半导体的热性能,例如硅和碳,甚至在室温下。虽然从微观的角度来看,热传输图像在无定形和晶体半导体之间有很大不同,但已经设计了一种统一的模拟晶体和玻璃的方法。在这里,我们介绍了统一的工作流程,该工作流同时实现了Boltzmann传输方程(BTE)和准谐波绿色-Kubo(QHGK)方法。我们讨论如何优化该理论以利用现代平行体系结构,以及如何在$κAldo$中实现:一种多功能且可扩展的开源软件来计算固体中的声子传输。这种方法应用于晶体和部分无序的基于硅的系统,包括散装硅和撞线液,以及硅 - 德国合金合金抗体,大大降低了导热率。
Understanding heat transport in semiconductors and insulators is of fundamental importance because of its technological impact in electronics and renewable energy harvesting and conversion. Anharmonic Lattice Dynamics provides a powerful framework for the description of heat transport at the nanoscale. One of the advantages of this method is that it naturally includes quantum effects due to atoms vibrations, which are needed to compute the thermal properties of semiconductors widely used in nanotechnology, like silicon and carbon, even at room temperature. While the heat transport picture substantially differs between amorphous and crystalline semiconductors from a microscopic standpoint, a unified approach to simulate both crystals and glasses has been devised. Here we introduce a unified workflow, which implements both the Boltzmann Transport equation (BTE) and the Quasi Harmonic Green-Kubo (QHGK) methods. We discuss how the theory can be optimized to exploit modern parallel architectures, and how it is implemented in $κALDo$: a versatile and scalable open-source software to compute phonon transport in solids. This approach is applied to crystalline and partially disordered silicon-based systems, including bulk silicon and clathrates, and on silicon-germanium alloy clathrates with largely reduced thermal conductivity.