论文标题

在线动态网络的分期动画策略

Staged Animation Strategies for Online Dynamic Networks

论文作者

Crnovrsanin, Tarik, Shilpika, Chandrasegaran, Senthil, Ma, Kwan-Liu

论文摘要

动态网络 - 随着时间的变化而变化的网络可以分为两种类型:离线动态网络,该网络的所有状态都是已知的,以及在线动态网络,其中只有网络的过去状态才知道。关于动态网络中的动画转变的研究更多地集中在离线数据上,在此渲染策略可以考虑到网络的过去和将来状态。渲染在线动态网络是一个更具挑战性的问题,因为它需要在监视任务的及时性之间保持平衡 - 这样动画就不会远远落后于事件 - 以及对理解任务的清晰度 - 以最大程度地减少可能难以遵循的同时更改。为了说明这些要求所面临的挑战,我们探索了三种策略,以舞台为在线动态网络进行动画:基于时间的,基于事件的基于事件,并通过结合前两个的优势来介绍的新混合方法。我们说明了每种策略在表示低通量和高通量数据方面的优势和缺点,并进行了涉及监视和理解动态网络的用户研究。我们还进行了一项后续研究,这是一项将监测和理解力与动态网络可视化专家相结合的思维研究。我们的发现表明,强调理解力的动画分期策略对参与者的响应时间和准确性有更好的作用。但是,在高度动态网络的复杂变化方面,``理解''的概念并不总是很清楚,这需要在混合方法提供的分期时进行一些迭代。根据我们的结果,我们为混合方法平衡基于事件的参数和基于时间的参数提出了建议。

Dynamic networks -- networks that change over time -- can be categorized into two types: offline dynamic networks, where all states of the network are known, and online dynamic networks, where only the past states of the network are known. Research on staging animated transitions in dynamic networks has focused more on offline data, where rendering strategies can take into account past and future states of the network. Rendering online dynamic networks is a more challenging problem since it requires a balance between timeliness for monitoring tasks -- so that the animations do not lag too far behind the events -- and clarity for comprehension tasks -- to minimize simultaneous changes that may be difficult to follow. To illustrate the challenges placed by these requirements, we explore three strategies to stage animations for online dynamic networks: time-based, event-based, and a new hybrid approach that we introduce by combining the advantages of the first two. We illustrate the advantages and disadvantages of each strategy in representing low- and high-throughput data and conduct a user study involving monitoring and comprehension of dynamic networks. We also conduct a follow-up, a think-aloud study combining monitoring and comprehension with experts in dynamic network visualization. Our findings show that animation staging strategies that emphasize comprehension do better for participant response times and accuracy. However, the notion of ``comprehension'' is not always clear when it comes to complex changes in highly dynamic networks, requiring some iteration in staging that the hybrid approach affords. Based on our results, we make recommendations for balancing event-based and time-based parameters for our hybrid approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源