论文标题

3相连平面图的周期频谱中的紧密缝隙

Tight gaps in the cycle spectrum of 3-connected planar graphs

论文作者

Cui, Qing, Lo, On-Hei Solomon

论文摘要

对于任何积极的整数$ k $,定义$ f(k)$(分别为$ f_3(k)$)是最小整数$ \ ge k $,以使每个3个连接的平面图$ g $(分别为3个连接的立方平面图$ g $ g $ g $ \ ge g ge k $ ge k $ cy $ $ k $ in Interve $ k $ k(k) f_3(k)] $)。 默克(Merker)表明,任何$ k \ ge 2 $,$ f_3(k)\ le 2k + 9 $,以及$ f_3(k)\ ge 2k + 2 $,即使$ k \ ge 4 $。他推测,任何$ k \ ge 2 $ $ f_3(k)\ le 2k + 2 $。 Zamfirescu认为,这个猜想是对每个什至$ k \ ge 6 $的无限反例的家族的反驳,其图形在$ [k,2k + 2] $中没有周期长度,即$ f_3(k)\ ge 2k + 3 $,均为任何$ k \ ge 6 $ 6 $。但是,$ f_3(k)$的确切值仅以$ k \ le 4 $而闻名,并且它被打开以确定$ k \ ge 5 $的$ f_3(k)$。在本文中,我们改善了默克的上限,并为每$ k \ ge 5 $提供$ f_3(k)$的确切值。我们表明$ f_3(5)= 10 $,$ f_3(7)= 15 $,$ f_3(9)= 20 $,而$ f_3(k)= 2k + 3 $,对于任何$ k = 6、8 $或$ \ ge 10 $。 对于一般的三连接平面图,默克猜想存在一些正整数$ c $,因此对于任何正整数$ k $,$ f(k)\ le 2k + c $。我们对这个猜想给出了完全积极的答案。我们证明,对于任何$ k \ le 3 $,$ f(4)= 10 $,$ f(k)= 5 $,$ f(k)= 2k + 3 $对于任何$ k \ ge 5 $。

For any positive integer $k$, define $f(k)$ (respectively, $f_3(k)$) to be the minimal integer $\ge k$ such that every 3-connected planar graph $G$ (respectively, 3-connected cubic planar graph $G$) of circumference $\ge k$ has a cycle whose length is in the interval $[k, f(k)]$ (respectively, $[k, f_3(k)]$). Merker showed that $f_3(k) \le 2k + 9$ for any $k \ge 2$, and $f_3(k) \ge 2k + 2$ for any even $k \ge 4$. He conjectured that $f_3(k) \le 2k + 2$ for any $k \ge 2$. This conjecture was disproved by Zamfirescu, who gave an infinite family of counterexamples for every even $k \ge 6$ whose graphs have no cycle length in $[k, 2k + 2]$, i.e. $f_3(k) \ge 2k + 3$ for any even $k \ge 6$. However, the exact value of $f_3(k)$ was only known for $k \le 4$, and it was left open to determine $f_3(k)$ for $k \ge 5$. In this paper we improve Merker's upper bound, and give the exact value of $f_3(k)$ for every $k \ge 5$. We show that $f_3(5) = 10$, $f_3(7) = 15$, $f_3(9) = 20$, and $f_3(k) = 2k + 3$ for any $k = 6, 8$ or $\ge 10$. For general 3-connected planar graphs, Merker conjectured that there exists some positive integer $c$ such that $f(k) \le 2k + c$ for any positive integer $k$. We give a complete positive answer to this conjecture. We prove that $f(k) = 5$ for any $k \le 3$, $f(4) = 10$, and $f(k) = 2k + 3$ for any $k \ge 5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源