论文标题
hap-sap:使用潜在时空霍克斯工艺在LBSN中的语义注释
HAP-SAP: Semantic Annotation in LBSNs using Latent Spatio-Temporal Hawkes Process
论文作者
论文摘要
基于位置的社交网络(LBSN)的普遍性已减少了对人类流动模式的理解。人类动态的知识可以以各种方式帮助,例如城市规划,管理交通拥堵,个性化的建议等。这些动态受到社会影响,流动性周期性,空间接近,用户之间的影响和语义类别等因素的影响,这使位置建模成为关键任务。但是,作为位置语义表征的类别可能缺少某些签名,并可能对建模用户的移动性动态产生不利影响。同时,移动性模式为缺失的语义类别提供了提示。在本文中,我们同时解决了位置的语义注释和用户的位置采用动态的问题。我们提出了模型HAP-SAP,这是一种潜在的时空多元鹰队过程,它考虑了潜在的语义类别影响,以及用户的时间和空间移动性模式。模型参数和潜在语义类别是使用预期最大化算法来推断的,该算法使用Gibbs采样来获得潜在语义类别的后验分布。推断的语义类别可以补充我们的模型,以预测用户的下一个入住事件。我们在实际数据集上的实验证明了所提出的模型对于语义注释和位置采用建模任务的有效性。
The prevalence of location-based social networks (LBSNs) has eased the understanding of human mobility patterns. Knowledge of human dynamics can aid in various ways like urban planning, managing traffic congestion, personalized recommendation etc. These dynamics are influenced by factors like social impact, periodicity in mobility, spatial proximity, influence among users and semantic categories etc., which makes location modelling a critical task. However, categories which act as semantic characterization of the location, might be missing for some check-ins and can adversely affect modelling the mobility dynamics of users. At the same time, mobility patterns provide a cue on the missing semantic category. In this paper, we simultaneously address the problem of semantic annotation of locations and location adoption dynamics of users. We propose our model HAP-SAP, a latent spatio-temporal multivariate Hawkes process, which considers latent semantic category influences, and temporal and spatial mobility patterns of users. The model parameters and latent semantic categories are inferred using expectation-maximization algorithm, which uses Gibbs sampling to obtain posterior distribution over latent semantic categories. The inferred semantic categories can supplement our model on predicting the next check-in events by users. Our experiments on real datasets demonstrate the effectiveness of the proposed model for the semantic annotation and location adoption modelling tasks.