论文标题
深度稀疏的光场重新聚焦
Deep Sparse Light Field Refocusing
论文作者
论文摘要
光场摄影使能够录制4D图像,其中包含角度信息以及场景的空间信息。光场成像的重要应用之一是捕获后重新聚焦。为此,当前的方法需要一个密集的角度视图。这些可以通过微镜头系统或压缩系统获取。两种技术都有主要的缺点,包括笨重的结构和角空间分辨率的权衡。我们提出了基于神经网络稀疏角度信息的数字重新聚焦的新颖实现。这允许录制高空间分辨率,以支持角度分辨率,从而可以设计带有改进的硬件的紧凑型和简单的设备,并可以更好地性能进行压缩系统的性能。我们使用了一种新型的卷积神经网络,该网络相对较小,可以通过低记忆消耗来实现快速重建。此外,它允许进行处理,而无需重新训练各种重新聚焦范围和噪声水平。结果表明与现有方法相比有了重大改进。
Light field photography enables to record 4D images, containing angular information alongside spatial information of the scene. One of the important applications of light field imaging is post-capture refocusing. Current methods require for this purpose a dense field of angle views; those can be acquired with a micro-lens system or with a compressive system. Both techniques have major drawbacks to consider, including bulky structures and angular-spatial resolution trade-off. We present a novel implementation of digital refocusing based on sparse angular information using neural networks. This allows recording high spatial resolution in favor of the angular resolution, thus, enabling to design compact and simple devices with improved hardware as well as better performance of compressive systems. We use a novel convolutional neural network whose relatively small structure enables fast reconstruction with low memory consumption. Moreover, it allows handling without re-training various refocusing ranges and noise levels. Results show major improvement compared to existing methods.