论文标题

信息理论的反事实学习来自失踪的反馈

Information Theoretic Counterfactual Learning from Missing-Not-At-Random Feedback

论文作者

Wang, Zifeng, Chen, Xi, Wen, Rui, Huang, Shao-Lun, Kuruoglu, Ercan E., Zheng, Yefeng

论文摘要

针对处理缺失的随机数据(MNAR)的反事实学习是推荐文献中有趣的主题,因为MNAR数据在现代推荐系统中无处不在。通常,大多数以前的反事实学习方法都需要丢失 - 随机数据(MAR)数据,即随机对照试验(RCT)。但是,在实践中,RCT的执行非常昂贵。为了绕过RCT的使用,我们构建了信息理论反事实信息瓶颈(CVIB),作为无RCT学习的替代方案。通过将原始信息瓶颈拉格朗日式的任务感知的相互信息术语分为事实和反事实部分,我们得出了对比的信息损失和额外的输出信心惩罚,这有助于事实和反事实领域之间的平衡学习。对现实世界数据集的经验评估表明,我们的CVIB显着增强了浅层和深层模型,这在推荐中阐明了反事实学习,这超出了RCT。

Counterfactual learning for dealing with missing-not-at-random data (MNAR) is an intriguing topic in the recommendation literature since MNAR data are ubiquitous in modern recommender systems. Missing-at-random (MAR) data, namely randomized controlled trials (RCTs), are usually required by most previous counterfactual learning methods for debiasing learning. However, the execution of RCTs is extraordinarily expensive in practice. To circumvent the use of RCTs, we build an information-theoretic counterfactual variational information bottleneck (CVIB), as an alternative for debiasing learning without RCTs. By separating the task-aware mutual information term in the original information bottleneck Lagrangian into factual and counterfactual parts, we derive a contrastive information loss and an additional output confidence penalty, which facilitates balanced learning between the factual and counterfactual domains. Empirical evaluation on real-world datasets shows that our CVIB significantly enhances both shallow and deep models, which sheds light on counterfactual learning in recommendation that goes beyond RCTs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源