论文标题
经典Novae的最大幅度与下降率(MMRD)关系的理论
A Theory for the Maximum Magnitude versus Rate of Decline (MMRD) Relation of Classical Novae
论文作者
论文摘要
我们使用基于光学厚的风理论构建的自由发射模型曲线提出了一种关于Novae的MMRD关系的理论。我们计算了各种$(\ dot m _ {\ dot m _ {\ rm acc},m _ {\ rm wd})$的$(t_3,m_ {v,\ rm max})$ m _ {\ rm acc} $是质量$ m _ {\ rm wd} $的白矮人(WD)的质量积聚率。模型光曲线的特征在于$ x \ equiv m _ {\ rm env}/m _ {\ rm sc} $,其中$ m _ {\ rm env} $是富含氢的包封质量和$ m _ {\ rm sc} $是尺度质量的质量,在某些风中是一定的scales save save bary。对于给定的点火质量$ M _ {\ rm Ig} $,我们可以在模型光曲线上指定第一个点$ x_0 = m _ {\ rm Ig}/m _ {\ rm sc} $,并计算相应的峰值亮度和$ t_3 $ frestiont Point Point Point Point Point Point Point Point Point Point Point Point Point Point Point Point Point。我们的$(t_3,m_ {v,\ rm max})$点涵盖了现有novae的分布。质量吸积率越低,峰值越明亮。最大亮度仅限于$ m_ {观察性MMRD趋势的重要部分对应于$ \ dot m _ {\ rm acc} \ sim5 \ times10^{ - 9} 〜m_ \ odot $ yr $ yr $^{ - 1} $与不同的WD质量。趋势线的散射表明其质量差异率有所不同。因此,确实存在MMRD关系的全球趋势,但是它的散射太大,无法成为单个Novae的精确距离指标。我们将$(\ dot m _ {\ rm acc},m _ {\ rm wd})$组成$(t_3,m_ {v,\ rm max})$。
We propose a theory for the MMRD relation of novae, using free-free emission model light curves built on the optically thick wind theory. We calculated $(t_3,M_{V,\rm max})$ for various sets of $(\dot M_{\rm acc}, M_{\rm WD})$, where $M_{V,\rm max}$ is the peak absolute $V$ magnitude, $t_3$ is the 3-mag decay time from the peak, and $\dot M_{\rm acc}$ is the mass accretion rate on to the white dwarf (WD) of mass $M_{\rm WD}$. The model light curves are uniquely characterized by $x\equiv M_{\rm env}/M_{\rm sc}$, where $M_{\rm env}$ is the hydrogen-rich envelope mass and $M_{\rm sc}$ is the scaling mass at which the wind has a certain wind mass-loss rate. For a given ignition mass $M_{\rm ig}$, we can specify the first point $x_0= M_{\rm ig}/M_{\rm sc}$ on the model light curve, and calculate the corresponding peak brightness and $t_3$ time from this first point. Our $(t_3, M_{V,\rm max})$ points cover well the distribution of existing novae. The lower the mass accretion rate, the brighter the peak. The maximum brightness is limited to $M_{V,\rm max} \gtrsim -10.4$ by the lowest mass-accretion rate of $\dot M_{\rm acc} \gtrsim1 \times 10^{-11}~M_\odot$ yr$^{-1}$. A significant part of the observational MMRD trend corresponds to the $\dot M_{\rm acc}\sim5\times10^{-9}~M_\odot$ yr$^{-1}$ line with different WD masses. A scatter from the trend line indicates a variation in their mass-accretion rates. Thus, the global trend of an MMRD relation does exist, but its scatter is too large for it to be a precision distance indicator of individual novae. We tabulate $(t_3, M_{V,\rm max})$ for many sets of $(\dot M_{\rm acc},M_{\rm WD})$.