论文标题

2+1d中的单个风味横向模型中的临界行为

Critical Behaviour in the Single Flavor Thirring Model in 2+1d

论文作者

Hands, Simon, Mesiti, Michele, Worthy, Jude

论文摘要

提出了2+1个时空维度中单料扭转模型的晶格场理论模拟的结果。晶格模型是使用域壁费米子(Fermions)制定的,作为在墙壁分离$ l_s \ to \ infty $的限制下恢复连续模型的正确u(2)对称的手段。 $ 12^3,16^3 \ times l_s $,不同的自我相互作用强度$ g^2 $和裸质量$ m $的仿真使用$ l_s = 8,\ ldots 48 $,以及biinear concensate $ \ langle \ langle \ langle \ bar \ bar \ rangle \ rang \ rang \ rang \ rang \ rang \ rang \ rang \ rang \ rang \ rang \ rang \ rang \ range / u(2)$ \ to $ u(1)$ \ otimes $ u(1)在关键的$ g_c^2 $下进行对称性相变。提出了$ g^{-2}的首次估计,并提出了$和关键指数,显示了与平均场值相比小但显着的偏离。结果证实了确实存在对称性的过渡,因此,thirring模型$ n_c> 1 $的临界数量。在$ 16^3 \ times48 $上的破碎阶段也获得了冷凝水和相关敏感性的结果,这表明这里尚未控制$ l_s \ to \ infty $外推。我们还提出了与相关的2+1 $ d $截断的重叠操作员DOL所获得的结果,证明了指数定位,这是恢复U(2)全球对称性的必要条件,但是在破碎的相位,Ginsparg-Wilson条件的恢复为$ L_S \ to \ infty $非常缓慢。

Results of a lattice field theory simulation of the single-flavor Thirring model in 2+1 spacetime dimensions are presented. The lattice model is formulated using domain wall fermions as a means to recover the correct U(2) symmetries of the continuum model in the limit where wall separation $L_s\to\infty$. Simulations on $12^3, 16^3\times L_s$, varying self-interaction strength $g^2$ and bare mass $m$ are performed with $L_s = 8, \ldots 48$, and the results for the bilinear condensate $\langle\barψψ\rangle$ fitted to a model equation of state assuming a U(2)$\to$U(1)$\otimes$U(1) symmetry-breaking phase transition at a critical $g_c^2$. First estimates for $g^{-2}a$ and critical exponents are presented, showing small but significant departures from mean-field values. The results confirm that a symmetry-breaking transition does exist and therefore the critical number of flavors for the Thirring model $N_c > 1$. Results for both condensate and associated susceptibility are also obtained in the broken phase on $16^3\times48$, suggesting that here the $L_s\to\infty$ extrapolation is not yet under control. We also present results obtained with the associated 2+1$d$ truncated overlap operator DOL demonstrating exponential localisation, a necessary condition for the recovery of U(2) global symmetry, but that recovery of the Ginsparg-Wilson condition as $L_s\to\infty$ is extremely slow in the broken phase.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源