论文标题

Palettailor:分类数据的可区分着色

Palettailor: Discriminable Colorization for Categorical Data

论文作者

Lu, Kecheng, Feng, Mi, Chen, Xin, Sedlmair, Michael, Deussen, Oliver, Lischinski, Dani, Cheng, Zhanglin, Wang, Yunhai

论文摘要

我们提出了一种集成的方法,用于创建和分配调色板,例如多级散点图,线和条形图等不同的可视化。尽管其他方法将颜色的创建与分配分开,但我们的方法考虑了数据特征以产生调色板,然后以促进类更好的类别歧视的方式分配了调色板。为此,我们使用基于模拟退火的自定义优化来最大化三个精心设计的颜色评分功能的组合:点独特性,名称差异和颜色歧视。我们将我们对ART调色板的方法与用于散点图和线路图的受控用户研究进行了比较,此外,我们还进行了案例研究。我们的结果表明,作为一种完全自动化的方法,Palettailor的歧视质量比现有方法更高。优化的效率使我们还可以将用户修改纳入颜色选择过程。

We present an integrated approach for creating and assigning color palettes to different visualizations such as multi-class scatterplots, line, and bar charts. While other methods separate the creation of colors from their assignment, our approach takes data characteristics into account to produce color palettes, which are then assigned in a way that fosters better visual discrimination of classes. To do so, we use a customized optimization based on simulated annealing to maximize the combination of three carefully designed color scoring functions: point distinctness, name difference, and color discrimination. We compare our approach to state-ofthe-art palettes with a controlled user study for scatterplots and line charts, furthermore we performed a case study. Our results show that Palettailor, as a fully-automated approach, generates color palettes with a higher discrimination quality than existing approaches. The efficiency of our optimization allows us also to incorporate user modifications into the color selection process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源