论文标题

迈向扩散MRI中学习的最佳Q空间采样

Towards learned optimal q-space sampling in diffusion MRI

论文作者

Weiss, Tomer, Vedula, Sanketh, Senouf, Ortal, Michailovich, Oleg, AlexBronstein

论文摘要

纤维拖拉术是计算神经科学的重要工具,它可以重建大脑白质的空间连通性和组织。纤维拖拉术利用扩散磁共振成像(DMRI),该成像允许测量沿不同空间方向的脑水的表观扩散。不幸的是,收集此类数据的价格是降低空间分辨率和大幅升高的采集时间的价格,这限制了DMRI的临床适用性。到目前为止,使用两种主要策略解决了这个问题。大多数努力已扩大为提高任何但固定采样方案的信号估计质量(通过选择扩散编码梯度定义)。另一方面,对采样方案的优化也已被证明是有效的。受到先前结果的启发,目前的工作将上述策略合并为统一的估计框架,其中对估计模型和采样设计{\ IT同时}进行了优化。提出的解决方案可实质性地改善信号估计的质量以及通过纤维拖拉机进行分析的准确性。尽管证明学习估算模型的最佳性可能需要更广泛的评估,但我们仍然声称,学到的抽样方案可以立即使用,提供了一种改善DMRI分析的方法,而无需部署用于估算其估计的神经网络。我们基于人类连接项目数据提供了全面的比较分析。可以在https://github.com/tomer196/learned_dmri上进行编码和学习的采样设计。

Fiber tractography is an important tool of computational neuroscience that enables reconstructing the spatial connectivity and organization of white matter of the brain. Fiber tractography takes advantage of diffusion Magnetic Resonance Imaging (dMRI) which allows measuring the apparent diffusivity of cerebral water along different spatial directions. Unfortunately, collecting such data comes at the price of reduced spatial resolution and substantially elevated acquisition times, which limits the clinical applicability of dMRI. This problem has been thus far addressed using two principal strategies. Most of the efforts have been extended towards improving the quality of signal estimation for any, yet fixed sampling scheme (defined through the choice of diffusion-encoding gradients). On the other hand, optimization over the sampling scheme has also proven to be effective. Inspired by the previous results, the present work consolidates the above strategies into a unified estimation framework, in which the optimization is carried out with respect to both estimation model and sampling design {\it concurrently}. The proposed solution offers substantial improvements in the quality of signal estimation as well as the accuracy of ensuing analysis by means of fiber tractography. While proving the optimality of the learned estimation models would probably need more extensive evaluation, we nevertheless claim that the learned sampling schemes can be of immediate use, offering a way to improve the dMRI analysis without the necessity of deploying the neural network used for their estimation. We present a comprehensive comparative analysis based on the Human Connectome Project data. Code and learned sampling designs aviliable at https://github.com/tomer196/Learned_dMRI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源