论文标题

Hecke Cusp形式的傅立叶系数的单调链

Monotone chains of Fourier coefficients of Hecke cusp forms

论文作者

Klurman, Oleksiy, Mangerel, Alexander

论文摘要

我们证明了与算术归一化的全体形态hecke cusp的傅立叶系数相关的一般等均分配声明(有条件和无条件),$ f_1,\ ldots,f_k $,没有复杂的乘法,具有相等重量(可能不同的)平方英尺和琐事的nebentypus。作为第一个应用程序,我们表明,对于Ramanujan $τ$函数和任何可接受的$ k $ - $ k $ -tuple,由不同的非负整数$ a_1,\ ldots,a_k $ a_k $ the set $ \ {n \ in \ mathbb {n} n} <\ cdots <|τ(n+a_k)| \} $$具有正自然密度。这一结果改善了Bilu,Deshouillers,Gun和Luca [Compos。数学。 (2018),没有。 11,2441-2461]。其次,我们通过表明$ \ {n \ in \ mathbb {n}:τ(n+a_1)<τ(n+a_2)<τ(n+a_3)\} $具有积极的相对上密度至少$ 1/6 $的$ y _ 3 $ $ $(a_3通常,对于这种长度不平等的链条$ k> 3 $,我们表明,在埃利奥特(Elliott)对乘法功能相关性的猜想的假设下,该集合的相对自然密度为$ 1/k!。我们的结果至关重要地依赖于几种关键成分:i)函数$ n \ mapsto \ log | f |τ(n)| $的多变量erdős-kac类型定理,以$ n $为条件,属于$ n $属于$τ$的$ n $,是$τ$的集合,luca,radziwill and radziwill and shparparinski的普遍化工作, ii)牛顿和索恩最近在所有$ n \ geq 2 $的$ \ text {gl}(n)$的对称功能$ l $ functions的功能上的突破,并将其应用于sato-tate cosivenure的定量形式; iii)陶和特雷宁在对数埃利奥特猜想上的工作。

We prove general equidistribution statements (both conditional and unconditional) relating to the Fourier coefficients of arithmetically normalized holomorphic Hecke cusp forms $f_1,\ldots,f_k$ without complex multiplication, of equal weight, (possibly different) squarefree level and trivial nebentypus. As a first application, we show that for the Ramanujan $τ$ function and any admissible $k$-tuple of distinct non-negative integers $a_1,\ldots,a_k$ the set $$ \{n \in \mathbb{N} : |τ(n+a_1)| < \cdots < |τ(n+a_k)|\} $$ has positive natural density. This result improves upon recent work of Bilu, Deshouillers, Gun and Luca [Compos. Math. (2018), no. 11, 2441-2461]. Secondly, we make progress towards understanding the signed version by showing that $$ \{n \in \mathbb{N} : τ(n+a_1) < τ(n+a_2) < τ(n+a_3)\} $$ has positive relative upper density at least $1/6$ for any admissible triple of distinct non-negative integers $(a_1,a_2,a_3).$ More generally, for such chains of inequalities of length $k > 3$ we show that under the assumption of Elliott's conjecture on correlations of multiplicative functions, the relative natural density of this set is $1/k!.$ Previously results of such type were known for $k\le 2$ as consequences of works by Serre and by Matomäki and Radziwill. Our results rely crucially on several key ingredients: i) a multivariate Erdős-Kac type theorem for the function $n \mapsto \log|τ(n)|$, conditioned on $n$ belonging to the set of non-vanishing of $τ$, generalizing work of Luca, Radziwill and Shparlinski; ii) the recent breakthrough of Newton and Thorne on the functoriality of symmetric power $L$-functions for $\text{GL}(n)$ for all $n \geq 2$ and its application to quantitative forms of the Sato-Tate conjecture; and iii) the work of Tao and Teräväinen on the logarithmic Elliott conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源