论文标题

一个基于深度学习的自主机器人手机,用于分类应用程序

A Deep Learning-Based Autonomous RobotManipulator for Sorting Application

论文作者

Bui, Hoang-Dung, Nguyen, Hai, La, Hung Manh, Li, Shuai

论文摘要

在最近的过去,机器人的操纵和抓住机制受到了广泛的关注,导致了广泛的工业应用的发展。本文提出了用于对象分类应用程序的自动机器人握把系统的开发。机器人使用RGB-D数据来执行对象检测,姿势估计,轨迹生成和对象排序任务。提出的方法还可以处理用户选择的某些对象。训练有素的卷积神经网络用于执行对象检测并确定要抓住的对象的相应点云簇。从选定的点云数据中,GRASP发电机算法输出潜在的掌握。然后,抓握过滤器得分这些潜在的掌握,并选择了最高得分的掌握以在真实机器人上执行。运动计划者会生成无碰撞轨迹以执行所选的掌握。在Aubo机器人操纵器上进行的实验显示了在自主对象进行分类的情况下以稳健和快速的分类性能进行分类的潜力。

Robot manipulation and grasping mechanisms have received considerable attention in the recent past, leading to the development of wide range of industrial applications. This paper proposes the development of an autonomous robotic grasping system for object sorting application. RGB-D data is used by the robot for performing object detection, pose estimation, trajectory generation, and object sorting tasks. The proposed approach can also handle grasping certain objects chosen by users. Trained convolutional neural networks are used to perform object detection and determine the corresponding point cloud cluster of the object to be grasped. From the selected point cloud data, a grasp generator algorithm outputs potential grasps. A grasp filter then scores these potential grasps, and the highest-scored grasp is chosen to execute on a real robot. A motion planner generates collision-free trajectories to execute the chosen grasp. The experiments on AUBO robotic manipulator show the potentials of the proposed approach in the context of autonomous object sorting with robust and fast sorting performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源