论文标题
粒子加速器的在线优化物理学的高斯过程
Physics-informed Gaussian Process for Online Optimization of Particle Accelerators
论文作者
论文摘要
高维优化是运营大规模科学设施的关键挑战。我们应用物理知识的高斯工艺(GP)优化器通过进行有效的全球搜索来调整复杂的系统。典型的GP模型从过去的观察值中学习以做出预测,但这降低了它们对无法提供存档数据的新系统的适用性。取而代之的是,在这里,我们使用物理模拟的快速近似模型来设计GP模型。然后,使用GP从连续的在线观察来推断,以优化系统。进行了模拟和实验研究,以证明在线控制存储环的方法。我们表明,在收敛速度和此任务上的稳健性方面,物理知识的GP通常优于当前使用的在线优化器。通过物理学告知机器学习模型的能力可能在科学中具有广泛的应用。
High-dimensional optimization is a critical challenge for operating large-scale scientific facilities. We apply a physics-informed Gaussian process (GP) optimizer to tune a complex system by conducting efficient global search. Typical GP models learn from past observations to make predictions, but this reduces their applicability to new systems where archive data is not available. Instead, here we use a fast approximate model from physics simulations to design the GP model. The GP is then employed to make inferences from sequential online observations in order to optimize the system. Simulation and experimental studies were carried out to demonstrate the method for online control of a storage ring. We show that the physics-informed GP outperforms current routinely used online optimizers in terms of convergence speed, and robustness on this task. The ability to inform the machine-learning model with physics may have wide applications in science.