论文标题

AutoKWS:通过可区分体系结构搜索的关键字发现

AutoKWS: Keyword Spotting with Differentiable Architecture Search

论文作者

Zhang, Bo, Li, Wenfeng, Li, Qingyuan, Zhuang, Weiji, Chu, Xiangxiang, Wang, Yujun

论文摘要

智能音频设备由一个始终轻巧的关键字点斑点程序封闭,以减少功耗。但是,对于具有高精度和低潜伏期的设计模型的精确和快速响应能力的设计模型是具有挑战性的。已经做出了许多努力,以开发端到端的神经网络,在这些神经网络中,采用了深度可分离的卷积,时间卷积和LSTMs作为建筑单位。但是,这些具有人类专业知识的网络可能无法在广阔的搜索空间中实现最佳的权衡。在本文中,我们建议利用可区分神经体系结构搜索的最新进展,以发现更有效的网络。我们的搜索模型在Google语音命令数据集V1上获得了97.2%的TOP-1精度,只有近100K参数。

Smart audio devices are gated by an always-on lightweight keyword spotting program to reduce power consumption. It is however challenging to design models that have both high accuracy and low latency for accurate and fast responsiveness. Many efforts have been made to develop end-to-end neural networks, in which depthwise separable convolutions, temporal convolutions, and LSTMs are adopted as building units. Nonetheless, these networks designed with human expertise may not achieve an optimal trade-off in an expansive search space. In this paper, we propose to leverage recent advances in differentiable neural architecture search to discover more efficient networks. Our searched model attains 97.2% top-1 accuracy on Google Speech Command Dataset v1 with only nearly 100K parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源